The Relationship Between Neuromuscular Function and the W′ in Elite Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To assess the association between the W′ and measures of neuromuscular function relating to the capacity of skeletal muscle to produce force in a group of elite cyclists. Methods: Twenty-two athletes specializing in a range of disciplines and competing internationally volunteered to participate. Athletes completed assessments of maximum voluntary torque (MVT), voluntary activation, and isometric maximum voluntary contraction to measure rate of torque development (RTD). This was followed by assessment of peak power output (PPO) and 3-, 5-, and 12-minute time trials to determine critical power. Pearson correlation was used to examine associations with critical power and W′. Goodness of fit was calculated, and significant relationships were included in a linear stepwise regression model. Results: Significant positive relationships were evident between W′ and MVT (r = .82), PPO (r = .70), and RTD at 200 milliseconds (r = .59) but not with RTD at 50 milliseconds and voluntary activation. Correlations were also observed between critical power and RTD at 200 milliseconds and MVT (r = .54 and r = .51, respectively) but not with PPO, voluntary activation, or RTD at 50 milliseconds. The regression analysis found that 87% of the variability in W′ (F1,18 = 68.75; P < .001) was explained by 2 variables: MVT (81%) and PPO (6%). Conclusions: It is likely that muscle size and strength, as opposed to neural factors, contribute meaningfully to W′. These data can be used to establish training methods to enhance W′ to improve cycling performance in well-trained athletes.

Kordi, Thomas, Goodall, and Howatson are with the Dept of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom. Kordi is also with the Royal Dutch Cycling Federation (KNWU), Arnhem, The Netherlands. Parker Simpson is with the School of Sport and Exercise Sciences, University of Kent, Kent, United Kingdom; and the High Performance Centre of Japan Cycling, Izu-shi, Japan. Maden-Wilkinson is with the Physical Activity, Public Health and Wellness Research Group, Sheffield Hallam University, Sheffield, United Kingdom. Menzies is with the Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom. Howatson is also with the Water Research Group, North-West University, Potchefstroom, South Africa.

Howatson (glyn.howatson@northumbria.ac.uk) is corresponding author.
  • 1.

    Jones AM, Wilkerson DP, Vanhatalo A, Burnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Sports. 2008;18(5):615626. PubMed ID: 18067518 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):18761890. PubMed ID: 20195180 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48(11):23202334. PubMed ID: 27031742 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Vanhatalo A, McNaughton LR, Siegler J, Jones AM. Effect of induced alkalosis on the power-duration relationship of “all-out” exercise. Med Sci Sports Exerc. 2010;42(3):563570. PubMed ID: 19952817 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kordi M, Menzies C, Parker Simpson L. Relationship between power-duration parameters and mechanical and anthropometric properties of the thigh in elite cyclists. Eur J Appl Physiol. 2018;118(3):637645. PubMed ID: 29352330 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Miura A, Endo M, Sato H, Sato H, Barstow T, Fukuba Y. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans. Eur J Appl Physiol. 2002;87(3):238244. PubMed ID: 12111284 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Moritani T, Nagata A, deVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339350. PubMed ID: 7262059 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Parker Simpson L, Jones AM, Skiba PF, Vanhatalo A, Wilkerson D. Influence of hypoxia on the power-duration relationship during high-intensity exercise. Int J Sports Med. 2015;36(2):113119. PubMed ID: 25329429 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Broxterman RM, Craig JC, Ade CJ, Wilcox SL, Barstow TJ. The effect of resting blood flow occlusion on exercise tolerance and W’. Am J Physiol Regul Integr Comp Physiol. 2015;309(6):R684R691. PubMed ID: 26224689 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Vanhatalo A, Jones AM, Burnley M. Application of critical power in sport. Int J Sports Physiol Perform. 2011;6(1):128136. PubMed ID: 21487156 doi:

  • 11.

    Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SR, Ward SA. Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol. 2010;108(4):866874. PubMed ID: 20093659 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Broxterman RM, Richardson RS, Amann M. Less peripheral fatigue after prior exercise is not evidence against the regulation of the critical peripheral fatigue threshold. J Appl Physiol. 2015;119(12):1520. PubMed ID: 26670344 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Byrd MT, Wallace BJ, Clasey JL, Bergstrom HC. Contributions of lower body strength parameters to critical power and anaerobic work capacity. J Strength Cond Res. 2021;35(1):97101. PubMed ID: 29489713 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Mitchell EA, Martin NRW, Bailey SJ, Ferguson RA. Critical power is positively related to skeletal muscle capillarity and type I muscle fibers in endurance-trained individuals. J Appl Physiol. 2018;125(3):737745. PubMed ID: 29878875 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bishop D, Jenkins DG. The influence of resistance training on the critical power function & time to fatigue at critical power. Aust J Sci Med Sport. 1996;28(4):101105. PubMed ID: 9040899

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sawyer BJ, Stokes DG, Womack CJ, Morton RH, Weltman A, Gaesser GA. Strength training increases endurance time to exhaustion during high-intensity exercise despite no change in critical power. J Strength Cond Res. 2014;28(3):601609. PubMed ID: 23760362 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bassan N, Denadai BS, Lima LCR, Caritá RAC, Abdalla LHP, Greco CC. Effects of resistance training on impulse above end‐test torque and muscle fatigue. Exp Physiol. 2019;104(7):11151125. PubMed ID: 31131931 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37(2):145168. PubMed ID: 17241104 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. PubMed ID: 26941023 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Parker Simpson L, Kordi M. Comparison of critical power and W′ derived from 2 or 3 maximal tests. Int J Sports Physiol Perform. 2017;12(6):825830. PubMed ID: 27918663 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kordi M, Folland JP, Goodall S, et al. Cycling-specific isometric resistance training improves peak power output in elite sprint cyclists. Scand J Med Sci Sports. 2020;30(9):15941604. PubMed ID: 32516483 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Merton PA. Voluntary strength and fatigue. J Physiol. 1954;123(3):553564. PubMed ID: 13152698 doi:

  • 23.

    Tillin NA, Jimenez-Reyes P, Pain MTG, Folland JP. Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc. 2010;42(4):781790. PubMed ID: 19952835 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Tillin NA, Pain MTG, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31(1):6676. PubMed ID: 22938509 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Black MI, Jones AM, Kelly JA, Bailey SJ, Vanhatalo A. The constant work rate critical power protocol overestimates ramp incremental exercise performance. Eur J Appl Physiol. 2016;116(11–12):24152422. PubMed ID: 27787608 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kordi M, Folland J, Goodall S, et al. Mechanical and morphological determinants of peak power output in elite cyclists. Scand J Med Sci Sports. 2020;30(2):227237. PubMed ID: 31598998 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34(4):253267. PubMed ID: 15049717 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kent-Braun JA. Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol Occup Physiol. 1999;80(1):5763. PubMed ID: 10367724 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Schäfer LU, Hayes M, Dekerle J. The magnitude of neuromuscular fatigue is not intensity dependent when cycling above critical power but relates to aerobic and anaerobic capacities. Exp Physiol. 2019;104(2):209219. PubMed ID: 30468691 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Black MI, Jones AM, Bailey SJ, Vanhatalo A. Self-pacing increases critical power and improves performance during severe-intensity exercise. Appl Physiol Nutr Metab. 2015;40(7):662670. PubMed ID: 26088158 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2760 2760 79
Full Text Views 32 32 3
PDF Downloads 28 28 4