The Effect of Resistance Exercise Priming in the Morning on Afternoon Sprint Cross-Country Skiing Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: We tested whether a single session of heavy-load resistance priming conducted in the morning improved double-poling (DP) performance in the afternoon. Methods: Eight national-level male cross-country skiers (mean [SD]: 23 [3] y, 184 [6] cm, 73 [7] kg, maximum oxygen consumption = 69 [6] mL·kg−1·min−1) carried out 2 days of afternoon performance tests. In the morning, 5 hours before tests, subjects were counterbalanced to either a session of 3 × 3 repetitions (approximately 85%–90% 1-repetition maximum) of squat and sitting pullover exercises or no exercise. The performance was evaluated in DP as time to exhaustion (TTE) (approximately 3 min) on a treadmill and 30-m indoor sprints before and after TTE (30-m DP pre/post). Furthermore, submaximal DP oxygen cost, countermovement jump, and isometric knee-extension force during electrical stimulation were conducted. Participants reported perceived readiness on test days. Results: Resistance exercise session versus no exercise did not differ for TTE (approximately 3 min above) (mean ± 95% confidence interval = 3.6% ± 6.0%; P = .29; effect size [ES], Cohen d = 0.27), 30-m DP pre (−0.56% ± 0.80%; P = .21; ES = 0.20), 30-m DP post (−0.18% ± 1.13%; P = .76; ES = 0.03), countermovement jump (−2.0% ± 2.8%; P = .21; ES = 0.12), DP oxygen cost (−0.13% ± 2.04%; P = .91; ES = 0.02), or perceived readiness (P ≥ .11). Electrical stimulation force was not different in contraction or relaxation time but revealed low-frequency fatigue in the afternoon for the resistance exercise session only (−12% [7%]; P = .01; ES = 1.3). Conclusion: A single session of heavy-load, low-volume resistance exercise in the morning did not increase afternoon DP performance of short duration in high-level skiers. However, leg low-frequency fatigue after resistance priming, together with the presence of small positive effects in 2 out of 3 DP tests, may indicate that the preconditioning was too strenuous.

The authors are with the Dept of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.

Rud (bjarner@nih.no) is corresponding author.
  • 1.

    Harrison PW, James LP, McGuigan MR, Jenkins DG, Kelly VG. Resistance priming to enhance neuromuscular performance in sport: evidence, potential mechanisms and directions for future research. Sports Med. 2019;49(10):14991514. PubMed ID: 31203499 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    McGowan CJ, Pyne DB, Thompson KG, Raglin JS, Rattray B. Morning exercise: enhancement of afternoon sprint-swimming performance. Int J Sports Physiol Perform. 2017;12(5):605611. PubMed ID: 27617694 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Russell M, King A, Bracken RM, Cook CJ, Giroud T, Kilduff LP. A comparison of different modes of morning priming exercise on afternoon performance. Int J Sports Physiol Perform. 2016;11(6):763767. PubMed ID: 26658460 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Cook CJ, Kilduff LP, Crewther BT, Beaven M, West DJ. Morning based strength training improves afternoon physical performance in rugby union players. J Sci Med Sport. 2014;17(3):317321. PubMed ID: 23707139 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fry AC, Stone MH, Thrush JT, Fleck SJ. Precompetition training sessions enhance competitive performance of high anxiety junior weightlifters. J Strength Cond Res. 1995;9(1):3742.

    • Search Google Scholar
    • Export Citation
  • 6.

    Kilduff LP, Finn CV, Baker JS, Cook CJ, West DJ. Preconditioning strategies to enhance physical performance on the day of competition. Int J Sports Physiol Perform. 2013;8(6):677681. PubMed ID: 23689163 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ekstrand LG, Battaglini CL, McMurray RG, Shields EW. Assessing explosive power production using the backward overhead shot throw and the effects of morning resistance exercise on afternoon performance. J Strength Cond Res. 2013;27(1):101106. PubMed ID: 22395279 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tsoukos A, Veligekas P, Brown LE, Terzis G, Bogdanis GC. Delayed effects of a low-volume, power-type resistance exercise session on explosive performance. J Strength Cond Res. 2018;32(3):643650. PubMed ID: 28291764 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gonzalez-Badillo JJ, Rodriguez-Rosell D, Sanchez-Medina L, et al. Short-term recovery following resistance exercise leading or not to failure. Int J Sports Med. 2016;37(4):295304.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mason BRJ, Argus CK, Norcott B, Ball NB. Resistance training priming activity improves upper-body power output in rugby players: implications for game day performance. J Strength Cond Res. 2017;31(4):913920. PubMed ID: 27386962 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Losnegard T. Energy system contribution during competitive cross-country skiing. Eur J Appl Physiol. 2019;119(8):16751690. doi:

  • 12.

    Rud B, Secher NH, Nilsson J, Smith G, Hallen J. Metabolic and mechanical involvement of arms and legs in simulated double pole skiing. Scand J Med Sci Sports. 2014;24(6):913919. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Holmberg HC, Lindinger S, Stoggl T, Eitzlmair E, Muller E. Biomechanical analysis of double poling in elite cross-country skiers. Med Sci Sports Exerc. 2005;37(5):807818. PubMed ID: 15870635 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Andersson E, Bjorklund G, Holmberg HC, Ortenblad N. Energy system contributions and determinants of performance in sprint cross-country skiing. Scand J Med Sci Sports. 2017;27(4):385398. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Losnegard T, Myklebust H, Hallén J. Anaerobic capacity as a determinant of performance in sprint skiing. Med Sci Sports Exerc. 2012;44(4):673681. PubMed ID: 21952633 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sandbakk O, Ettema G, Leirdal S, Jakobsen V, Holmberg HC. Analysis of a sprint ski race and associated laboratory determinants of world-class performance. Eur J Appl Physiol. 2011;111(6):947957. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sandbakk Ø, Holmberg HC, Leirdal S, Ettema G. The physiology of world-class sprint skiers. Scand J Med Sci Sports. 2011;21(6):e9e16. doi:

  • 18.

    Losnegard T, Hallen J. Elite cross-country skiers do not reach their running VO2max during roller ski skating. J Sports Med Phys Fitness. 2014;54(4):389393. PubMed ID: 25034543

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Raastad T, Glomsheller T, Bjoro T, Hallen J. Changes in human skeletal muscle contractility and hormone status during 2 weeks of heavy strength training. Eur J Appl Physiol. 2001;84(1–2):5463. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:

  • 21.

    Raastad T, Hallén J. Recovery of skeletal muscle contractility after high- and moderate-intensity strength exercise. Eur J Appl Physiol. 2000;82(3):206214. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Losnegard T, Mikkelsen K, Ronnestad BR, Hallen J, Rud B, Raastad T. The effect of heavy strength training on muscle mass and physical performance in elite cross country skiers. Scand J Med Sci Sports. 2011;21(3):389401. PubMed ID:20136751 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):312. PubMed ID: 19092709 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mikkola JS, Rusko HK, Nummela AT, Paavolainen LM, Häkkinen K. Concurrent endurance and explosive type strength training increases activation and fast force production of leg extensor muscles in endurance athletes. J Strength Cond Res. 2007;21(2):613620. PubMed ID: 17530970

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Østerås H, Helgerud J, Hoff J. Maximal strength-training effects on force-velocity and force-power relationships explain increases in aerobic performance in humans. Eur J Appl Physiol. 2002;88(3):255263. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Skattebo Ø, Hallén J, Rønnestad BR, Losnegard T. Upper body heavy strength training does not affect performance in junior female cross-country skiers. Scand J Med Sci Sports. 2016;26(9):10071016. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Ofsteng S, Sandbakk O, van Beekvelt M, et al. Strength training improves double-poling performance after prolonged submaximal exercise in cross-country skiers. Scand J Med Sci Sports. 2018;28(3):893904.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Gołaś A, Maszczyk A, Zajac A, Mikołajec K, Stastny P. Optimizing post activation potentiation for explosive activities in competitive sports. J Hum Kinet. 2016;52(1):95106. PubMed ID: 28149397 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Beato M, McErlain-Naylor SA, Halperin I, Dello Iacono A. Current evidence and practical applications of flywheel eccentric overload exercises as postactivation potentiation protocols: a brief review. Int J Sports Physiol Perform. 2020;15:154161.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sale DG. Postactivation potentiation: role in human performance. Exerc Sport Sci Rev. 2002;30(3):138143. PubMed ID: 12150573 doi:

  • 31.

    Jones DA. High-and low-frequency fatigue revisited. Acta Physiol Scand. 1996;156(3):265270. doi:

  • 32.

    Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009;39(2):147166. PubMed ID: 19203135 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Olsson K, Cheng AJ, Al-Ameri M, et al. Impaired sarcoplasmic reticulum Ca2+ release is the major cause of fatigue-induced force loss in intact single fibres from human intercostal muscle. J Physiol. 2020;598(4):773787. PubMed ID: 31785106 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Vitale JA, Weydahl A. Chronotype, Physical activity, and sport performance: a systematic review. Sports Med. 2017;47(9):18591868. PubMed ID: 28493061 doi:

All Time Past Year Past 30 Days
Abstract Views 898 898 91
Full Text Views 42 42 7
PDF Downloads 37 37 3