Testosterone and Dihydrotestosterone Changes in Male and Female Athletes Relative to Training Status

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To establish if training volume was associated with androgen baselines and androgen responsiveness to acute exercise. Methods: During a “high-volume” training phase, 28 cyclists (14 men and 14 women) undertook oxygen-uptake and maximal-work-capacity testing. Two days later, they completed a repeat-sprint protocol, which was repeated 3 weeks later during a “low-volume” phase. Blood and saliva samples were collected before and after (+5 and +60 min) the repeat-sprint protocol. Blood was assayed for total testosterone (TT), free testosterone (FT), and dihydrotestosterone (DHT) and saliva, for testosterone and DHT. Results: Pretrial TT, FT, and DHT concentration was greater for males (P < .001, large effect size differences), and in both genders TT, DHT, and saliva for DHT was higher during high-volume loading (moderate to large effect size). Area-under-the-curve analysis revealed larger TT, FT, and DHT responses to the repeat-sprint protocol among females, and high-volume training was linked to larger TT, DHT, and saliva for DHT responses (moderate to large effect size). Baseline TT and FT correlated with oxygen uptake and work capacity in both genders (P < .05). Conclusion: DHT showed no acute performance correlation but was responsive to volume of training, particularly in females. This work informs on timelines and relationships of androgenic biomarkers in males and females across different training loads, adding to the complexity that should be considered in interpretation thereof. The authors speculate that testosterone may impact acute performance via behavioral mechanisms of motivation and attention; DHT, via training volume-induced androgenic promotion, may facilitate long-term adaptive changes, especially for females.

Cook, Agnew, and Fourie are with the Biomedical Sciences Discipline School of Science and Technology, University of New England, Armidale, NSW, Australia. Cook and Crewther are with the Hamlyn Centre, Imperial College, London, United Kingdom. Cook and Kilduff are with A-STEM, Swansea University, Swansea, United Kingdom. Crewther is also with the Inst of Sport–National Research Institute, Warsaw, Poland. Serpell is with the University of Canberra Research Inst for Sport and Exercise (UCRISE), University of Canberra, Canberra, ACT, Australia.

Serpell (ben.serpell@gmail.com) is corresponding author.
  • 1.

    Smith AA, Toone R, Peacock O, Drawer S, Stokes KA, Cook CJ. Dihydrotestosterone is elevated following sprint exercise in healthy young men. J Appl Physiol. 2013;114(10):14351440. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Horii N, Sato K, Mesaki N, Iemitsu M. Increased muscular 5α-dihydrotestosterone in response to resistance training relates to skeletal muscle mass and glucose metabolism in type 2 diabetic rats. PLoS One. 2016;11(11):e0165689. PubMed ID: 27832095 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Crewther BT, Cook CJ. A longitudinal analysis of salivary testosterone concentrations and competitiveness in elite and non-elite women athletes. Physiol Behav. 2018;188:157161. PubMed ID: 29425972 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Crewther BT, Cook CJ, Gaviglio CM, Kilduff LP, Drawer S. Baseline strength can influence the ability of salivary free testosterone to predict squat and sprinting performance. J Strength Cond Res. 2012;26(1):261268. PubMed ID: 22201698 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cook CJ, Crewther BT. The impact of a competitive learning environment on hormonal and emotional stress responses and skill acquisition and expression in a medical student domain. Physiol Behav. 2019;199:252257. PubMed ID: 30471383 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Liening S, Josephs RA. It is not just about testosterone: physiological mediators and moderators of testosterone’s behavioral effects. Soc Personal Psychol Compass. 2010;4(11):982994. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Crewther BT, Kilduff LP, Finn C, Scott P, Cook CJ. Salivary testosterone responses to a physical and psychological stimulus and subsequent effects on physical performance in healthy adults. Hormones. 2015;15(2):248255. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Russell M, King A, Bracken RM, Cook CJ, Giroud T, Kilduff LP. A comparison of different modes of morning priming exercise on afternoon performance. Int J Sports Physiol Perform. 2016;11(6):763767. PubMed ID: 26658460 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Crewther BT, Cook C, Cardinale M, Weatherby RP, Lowe T. Two emerging concepts for elite athletes: the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones. Sports Med. 2011;41(2):103123. PubMed ID: 21244104 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Crewther B, Carruthers J, Kilduff L, Sanctuary CE, Cook CJ. Temporal associations between individual changes in hormones, training motivation and physical perfromance in elite and non-elite trained men. Biol Sport. 2016;33(3):215221. PubMed ID: 27601775 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Sato K, Iemitsu M, Aizawa K, Ajisaka R. Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle. Am J Physiol Endocrinol Metab. 2008;294(5):E961E968. PubMed ID: 18349113 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bonifazi M, Ginanneschi F, della Volpe R, Rossi A. Effects of gonadal steroids on the input-output relationship of the corticospinal pathway in humans. Brain Res. 2004;1011(2):187194. PubMed ID: 15157805 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Basualto-Alarcon C, Jorquera G, Altamirano F, Jaimovich E, Estrada M. Testosterone signals through mTOR and androgen receptor to induce muscle hypertrophy. Med Sci Sports Exerc. 2013;45(9):17121720. PubMed ID: 23470307

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Morton RW, Oikawa SY, Wavell CG, et al. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol. 2016;121(1):129138. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Sinha-Hikim I, Artaza J, Woodhouse L, et al. Testosterone-induced increase in muscle size in healthy young men is associated with muscle fiber hypertrophy. Am J Physiol Endocrinol Metab. 2002;283(1):E154E164. PubMed ID: 12067856 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Swerdloff RS, Dudley RE, Page ST, Wang C, Salameh WA. Dihydrotestosterone: biochemistry, physiology, and clinical implications of elevated blood levels. Endocr Rev. 2017;38(3):220254. PubMed ID: 28472278 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Anawalt BD. Is dihydrotestosterone a classic hormone? Endocr Rev. 2017;38(3):170172. PubMed ID: 28582536 doi:

  • 18.

    Hamdi MM, Mutungi G. Dihydrotestosterone activates the MAPK pathway and modulates maximum isometric force through the EGF receptor in isolated intact mouse skeletal muscle fibres. J Physiol. 2010;588(3):511525. PubMed ID: 20008468 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sato K, Iemitsu M. Exercise and sex steroid hormones in skeletal muscle. J Steroid Biochem Mol Biol. 2015;145:200205. PubMed ID: 24704257 doi:

  • 20.

    Hawkins VN, Foster-Schubert K, Chubak J, et al. Effect of exercise on serum sex hormones in men: a 12-month randomized clinical trial. Med Sci Sports Exerc. 2008;40(2):223233. PubMed ID: 18202581 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Sato K, Iemitsu M, Katayama K, Ishida K, Kanao Y, Saito M. Responses of sex steroid hormones to different intensities of exercise in endurance athletes. Exp Physiol. 2016;101(1):168175. PubMed ID: 26518151 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Sato K, Iemitsu M, Matsutani K, Kurihara T, Hamaoka T, Fujita S. Resistance training restores muscle sex steroid hormone steroidogenesis in older men. FASEB J. 2014;28(4):18911897. PubMed ID: 24443372 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Cook CJ, Kilduff LP, Crewther BT. Basal and stress-induced salivary testosterone variation across the menstrual cycle and linkage to motivation and muscle power. Scand J Med Sci Sports. 2018;28(4):13451353. PubMed ID: 29266410 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Mezzullo M, Fazzini A, Gambineri A, et al. Parallel diurnal fluctuation of testosterone, androstenedione, dehydroepiandrosterone and 17OHprogesterone as assessed in serum and saliva: validation of a novel liquid chromatography-tandem mass spectrometry method for salivary steroid profiling. Clin Chem Lab Med. 2017;55(9):13151323. PubMed ID: 28076306 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pruessner JC, Kirschbaum C, Meinlschmid G, Hellhammer DH. Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology. 2003;28(7):916931. PubMed ID: 12892658 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. J Statis Software. 2017;82(13):126.

    • Search Google Scholar
    • Export Citation
  • 27.

    Computing RffS. In:R: A Language and Environment for Statistical Computing. 2013. R Foundation for Statistical Computing.

  • 28.

    Serpell BG, Waddington G, McGrath B, Cook CJ. Is there a link between stress and cognition, and capacity to execute motor skill? Med Sci Sports Exerc. 2020;52(11):23652372.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Lupo C, Baldi L, Bonifazi M, et al. Androgen levels following a football match. Eur J Appl Physiol Occup Physiol. 1985;54(5):494496. PubMed ID: 4085477 doi:

  • 30.

    Aizawa K, Iemitsu M, Maeda S, Mesaki N, Ushida T, Akimoto T. Endurance exercise training enhances local sex steroidogenesis in skeletal muscle. Med Sci Sports Exerc. 2011;43(11):20722080. PubMed ID: 21502890 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Wendowski O, Redshaw Z, Mutungi G. Dihydrotestosterone treatment rescues the decline in protein synthesis as a result of sarcopenia in isolated mouse skeletal muscle fibres. J Cachexia Sarcopenia Muscle. 2017;8(1):4856. PubMed ID: 27239418 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schonfelder M, Hofmann H, Schulz T, et al. Potential detection of low-dose transdermal testosterone administration in blood, urine, and saliva. Drug Test Anal. 2016;8(11–12):11861196. PubMed ID: 27723957

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1585 1585 192
Full Text Views 22 22 10
PDF Downloads 18 18 8