Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: To analyze peripheral brain-derived neurotrophic factor (BDNF) levels and psychophysiological parameters in youth badminton athletes during the season and to determine the relationship between variables. Methods: Fourteen young badminton athletes were assessed over the season (preseason, middle season, and final season). Serum BDNF (sBDNF) was determined during the preseason and final season. Sleep time, total physical activity, and time in vigorous activity were measured using an accelerometer. The fat-free mass, skeletal muscle mass, fat mass, handgrip strength, cardiorespiratory fitness (VO2max), and dietary intake were evaluated during the season. The Stroop Color and Word Test was employed to assess cognitive tasks. To evaluate the mood, the Brunel Mood Scale was used. Results: There  were lower sBDNF levels (−16.3% [46.8%]; P = .007) and sleep time (final season = 5.7 [1.1] vs preseason = 6.6 [1.1] h·night−1, P = .043) during the end of the season. The total calories and carbohydrate intake decreased across the season (P < .05). Conversely, better cognitive function was found in the final season with respect to the preseason (P < .05). There were significant correlations between BDNF and VO2max only in the preseason (r = .61, P = .027), but no significant relationship was found among sBDNF and cognitive performance, sleep time, and percentage of won games. Conclusions: Youth badminton athletes decreased their sBDNF levels, sleep time, carbohydrate, and calorie intake across the season. The athletes improved in cognitive function; however, only the females improved in body composition, and the males improved their VO2max in the middle season. The sBDNF levels were positively correlated with the VO2max in the preseason, and no correlations were observed among the sBDNF and psychological parameters, sleep time, and sport performance during the season.

Santos, de Sousa Junior, Brito, de Moura, Ribeiro, and Rossi are with the Immunometabolism of Skeletal Muscle and Exercise Research Group, Dept of Physical Education, Federal University of Piauí (UFPI), Teresina, Brazil. Maldonado is with the Facultad de Deportes Campus Ensenada, Universidad Autónoma de Baja California, Mexicali, Mexico. Figueiredo and Monteiro are with the Exercise and Immunometabolism Research Group, Dept of Physical Education, School of Technology and Sciences, and Freitas Junior, the Dept of Physical Education, São Paulo State University (UNESP), Presidente Prudente, Brazil. Neves is with the Health Sciences Program, Santo Amaro University, São Paulo, Brazil, and the Bipolar Disorder Program (PROMAN), Dept of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil. dos Santos is with the Dept of Biophysics and Physiology, and Rossi, the Health Science Program, Federal University of Piaui, Campus Minister Petrônio Portela, Teresina, Brazil.

Rossi (fabriciorossi@ufpi.edu.br) is corresponding author.
  • 1.

    Phomsoupha M, Laffaye G. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. Sports Med. 2015;45(4):473495. PubMed ID: 25549780 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cronin J, Lawton T, Harris N, et al. A brief review of handgrip strength and sport performance. J Strength Cond Res. 2017;31(11):31873217. PubMed ID: 28820854 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Chen J, Li Y, Zhang G, et al. Enhanced inhibitory control during re-engagement processing in badminton athletes: an event-related potential study. J Sport Health Sci. 2019;8(6):585594. PubMed ID: 31720072 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dinoff A, Herrmann N, Swardfager W, Lanctot KL. The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur J Neurosci. 2017;46(1):16351646. PubMed ID: 28493624 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Griffin ÉW, Mullally S, Foley C, et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males. Physiol Behav. 2011;104(5):934941. PubMed ID: 21722657 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc. 2007;39(4):728. PubMed ID: 17414812 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hung CL, Tseng JW, Chao HH, et al. Effect of acute exercise mode on serum brain-derived neurotrophic factor (BDNF) and task switching performance. J Clin Med. 2018;7(10):301. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist. 2012;18(1):8297. PubMed ID: 21531985 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mucher P, Batmyagmar D, Perkmann T, et al. Basal myokine levels are associated with quality of life and depressed mood in older adults. Psychophysiology. 2021;58(5):e13799. PubMed ID: 33655551 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Silva LPOD, Oliveira MFMD, Caputo F. Métodos de recuperação pós-exercício. Rev educ fis. 2013;24(3):489508. doi:10.4025/reveducfis.v24.3.17487

    • Search Google Scholar
    • Export Citation
  • 11.

    Kreher JB, Schwartz JB. Overtraining syndrome: a practical guide. Sports Health. 2012;4(2):128138. PubMed ID: 23016079 doi:

  • 12.

    Nattiv A, Loucks AB, Manore MM, et al. American college of sports medicine position stand: the female athlete triad. Med Sci Sports Exerc. 2007;39(10):18671882. PubMed ID: 17909417 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bonnar D, Bartel K, Kakoschke N, Lang C. Sleep interventions designed to improve athletic performance and recovery: a systematic review of current approaches. Sports Med. 2018;48(3):683703. PubMed ID: 29352373 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Antunes HKM, Andersen ML, Tufik S, De Mello MT. Privação de sono e exercício físico. Rev Bras Med Esporte. 2008;14(1):5156. doi:

  • 15.

    Halson SL, Juliff LE. Sleep, sport, and the brain. Prog Brain Res. 2017;234:1331.

  • 16.

    Fan TT, Chen WH, Shi L, et al. Objective sleep duration is associated with cognitive deficits in primary insomnia: BDNF may play a role. Sleep. 2019;42(1):zsy192. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Zielinski MR, Kim Y, Karpova SA, et al. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett. 2014;580:2731. PubMed ID: 25093703 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Crouter SE, Flynn JI, Bassett DR, Jr. Estimating physical activity in youth using a wrist accelerometer. Med Sci Sports Exerc. 2015;47(5):944. PubMed ID: 25207928 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Castro SL, Cunha LS, Martins L. Teste Stroop Neuropsicológico em Português. Porto, Portugal: Center of Psychology, University of Porto; 2000.

    • Search Google Scholar
    • Export Citation
  • 20.

    Mcnair DM. Manual Profile of Mood States. San Diego, CA: Educational & Industrial Testing Service; 1971.

  • 21.

    Rohlfs ICPDM, Rotta TM, Luft CDB, et al. A Escala de Humor de Brunel (Brums): instrumento para detecção precoce da síndrome do excesso de treinamento. Rev Bras Med Esporte. 2008;14(3):176181. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Hamilton GF, Mcdonald C, Chenier TC. Measurement of grip strength: validity and reliability of the sphygmomanometer and Jamar grip dynamometer. J Orthop Sports Phys Ther. 1992;16(5):215219. PubMed ID: 18796752 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test. Sports Med. 2008;38(1):3751. PubMed ID: 18081366 doi:

  • 24.

    Léger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. Eur J Sport Sci. 1988;6(2):93101. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lichtenstein AH, Appel LJ, Brands M, et al. Diet and lifestyle recommendations revision 2006: a scientific statement from the American Heart Association Nutrition Committee. Circulation. 2006;114(1):8296. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Madsen CM, Badault B, Nybo L. Cross-sectional and longitudinal examination of exercise capacity in elite youth badminton players. J Strength Cond Res. 2018;32(6):17541761. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Witek K, Żurek P, Zmijewski P, et al. Myokines in response to a tournament season among young tennis players. BioMed Res Int. 2016;2016:1460892. doi:

  • 28.

    Babaei P, Damirchi A, Mehdipoor M, Tehrani BS. Long term habitual exercise is associated with lower resting level of serum BDNF. Neurosci Lett. 2014;566:304308. PubMed ID: 24572590 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Belviranli M, Okudan N, Kabak B, et al. The relationship between brain-derived neurotrophic factor, irisin and cognitive skills of endurance athletes. Phys Sportsmed. 2016;44(3):290296. PubMed ID: 27254486 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Knaepen K, Goekint M, Heyman EM, Meeusen R. Neuroplasticity—exercise-induced response of peripheral brain-derived neurotrophic factor. Sports Med. 2010;40(9):765801. PubMed ID: 20726622 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bamaç B, Tamer GS, Colak T, et al. Effects of repeatedly heading a soccer ball on serum levels of two neurotrophic factors of brain tissue, BDNF and NGF, in professional soccer players. Biology of Sport. 2011;28(3):177. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Garcia-Suárez PC, Rentería I, Moncada-Jiménez J, et al. Acute systemic response of BDNF, lactate and cortisol to strenuous exercise modalities in healthy untrained women. Dose-Response. 2020;18(4):17.

    • Search Google Scholar
    • Export Citation
  • 33.

    Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur J Sport Sci. 2013;13(1):124. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Brandt R, Viana MS, Crocetta TB, Andrade A. Association between mood states and performance of Brazilian elite sailors: winners vs. non-winners. Cult Cienc y Deporte. 2016;11(32):119125.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Juliff LE, Halson SL, Peiffer JJ. Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport. 2015;18(1):1318. PubMed ID: 24629327 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Hinton PS, Sanford TC, Davidson MM, et al. Nutrient intakes and dietary behaviors of male and female collegiate athletes. Int J Sport Nutr Exerc Metab. 2004;14(4):389405. PubMed ID: 15467098 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. Eur J Sport Sci. 2011;29(suppl 1):S17S27. doi:

  • 38.

    Rauh MJ, Nichols JF, Barrack MT. Relationships among injury and disordered eating, menstrual dysfunction, and low bone mineral density in high school athletes: a prospective study. J Athl Train. 2010;45(3):243. PubMed ID: 20446837 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rossi FE, Landreth A, Beam S, et al. The effects of a sports nutrition education intervention on nutritional status, sport nutrition knowledge, body composition, and performance during off season training in NCAA Division I baseball players. J Sports Sci Med. 2017;16(1):60. PubMed ID: 28344452

    • Search Google Scholar
    • Export Citation
  • 40.

    Leeder J, Glaister M, Pizzoferro K, et al. Sleep duration and quality in elite athletes measured using wristwatch actigraphy. J Sports Sci. 2012;30(6):541545. PubMed ID: 22329779 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Lastella M, Roach GD, Sargent C. Travel fatigue and sleep/wake behaviors of professional soccer players during international competition. Sleep Health. 2019;5(2):141147. PubMed ID: 30928113 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Milewski MD, Skaggs DL, Bishop GA, et al. Chronic lack of sleep is associated with increased sports injuries in adolescent athletes. J Pediatr Orthop. 2014:34(2):129133. PubMed ID: 25028798 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Schmitt K, Holsboer-Trachsler E, Eckert A. BDNF in sleep, insomnia, and sleep deprivation. Annals Med. 2016;48(1–2):4251. doi:

  • 44.

    Mikoteit T, Brand S, Eckert A, et al. Brain-derived neurotrophic factor is a biomarker for subjective insomnia but not objectively assessable poor sleep continuity. J Psychiatr Res. 2019;110:103109. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Giese M, Unternaehrer E, Brand S, et al. The interplay of stress and sleep impacts BDNF level. PLoS One. 2013;8(10):e76050. PubMed ID: 24146812 doi:

  • 46.

    Walsh JJ, Tschakovsky ME. Exercise and circulating BDNF: mechanisms of release and implications for the design of exercise interventions. Appl Physiol Nutr Metab. 2018;43(11):10951104. PubMed ID: 29775542 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Máderová D, Krumpolec P, Slobodová L, et al. Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides. 2019;78:101961. PubMed ID: 31506171 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Polyakova M, Stuke K, Schuemberg K, et al. Stability of BDNF in human samples stored up to 6 months and correlations of serum and EDTA-plasma concentrations. Int J Mol Sci. 2017;18(6):1189. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 361 361 126
Full Text Views 7 7 4
PDF Downloads 11 11 5