Five-Minute Power-Based Test to Predict Maximal Oxygen Consumption in Road Cycling

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: To examine the ability of a multivariate model to predict maximal oxygen consumption (VO2max) using performance data from a 5-minute maximal test (5MT). Methods: Forty-six road cyclists (age 38 [9] y, height 177 [9] cm, weight 71.4 [8.6] kg, VO2max 61.13 [9.05] mL/kg/min) completed a graded exercise test to assess VO2max and power output. After a 72-hour rest, they performed a test that included a 5-minute maximal bout. Performance variables in each test were modeled in 2 independent equations, using Bayesian general linear regressions to predict VO2max. Stepwise selection was then used to identify the minimal subset of parameters with the best predictive power for each model. Results: Five-minute relative power output was the best explanatory variable to predict VO2max in the model from the graded exercise test (R 2 95% credibility interval, .81–.88) and when using data from the 5MT (R 2 95% credibility interval, .61–.77). Accordingly, VO2max could be predicted with a 5MT using the equation VO2max = 16.6 + (8.87 × 5-min relative power output). Conclusions: Road cycling VO2max can be predicted in cyclists through a single-variable equation that includes relative power obtained during a 5MT. Coaches, cyclists, and scientists may benefit from the reduction of laboratory assessments performed on athletes due to this finding.

Sitko and López-Laval are with the Dept of Physiatry and Nursery, Section of Physical Education and Sports, Faculty of Health and Sport Sciences, University of Zaragoza, Huesca, Spain. Cirer-Sastre and Corbi are with the National Inst of Physical Education of Catalonia (INEFC), University of Lleida (UdL), Lleida, Spain.

Sitko (sitko@unizar.es) is corresponding author.

Supplementary Materials

    • Supplementary File 1 (pdf 223 KB)
    • Supplementary File 2 (pdf 244 KB)
    • Supplementary File 3 (pdf 221 KB)
    • Supplementary File 4 (pdf 244 KB)
  • 1.

    Phillips KE, Hopkins WG. Determinants of cycling performance: a review of the dimensions and features regulating performance in elite cycling competitions. Sport Med Open. 2020;6(1):23. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Novak AR, Dascombe BJ. Physiological and performance characteristics of road, mountain bike and BMX cyclists. J Sci Cycling. 2014;3(3):916.

    • Search Google Scholar
    • Export Citation
  • 3.

    Jamnick NA, Botella J, Pyne DB, Bishop DJ. Manipulating graded exercise test variables affects the validity of the lactate threshold and VO2peak. PLoS One. 2018;13(7):e0199794. PubMed ID: 30059543 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Poole DC, Jones AM. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J Appl Physiol. 2017;122(4):9971002. PubMed ID: 28153947 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Beltz NM, Gibson AL, Janot JM, Kravitz L, Mermier CM, Dalleck LC. Graded exercise testing protocols for the determination of VO2max: historical perspectives, progress, and future considerations. J Sports Med. 2016;2016(1):112. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Lucía A, Rabadán M, Hoyos J, et al. . Frequency of the VO2max plateau phenomenon in world-class cyclists. Int J Sports Med. 2006;27(12):984992. PubMed ID: 16739087 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Caputo F, Denadai BS. Exercise mode affects the time to achieve V ˙O2max without influencing maximal exercise time at the intensity associated with V ˙O2max in triathletes. Int J Sports Med. 2006;27(10):798803. PubMed ID: 16586327 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hanon C, Leveque JM, Thomas C, Vivier L. Pacing strategy and V ˙O2 kinetics during a 1500-m race. Int J Sports Med. 2008;29(3):206211. PubMed ID: 17990206 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Aisbett B, Le Rossignol P, McConell GK, Abbiss CR, Snow R. Effects of starting strategy on 5-min cycling time-trial performance. J Sports Sci. 2009;27(11):12011209. PubMed ID: 19724963 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Aisbett B, Lerossignol P, McConell GK, Abbiss CR, Snow R. Influence of all-out and fast start on 5-min cycling time trial performance. Med Sci Sports Exerc. 2009;41(10):19651971. PubMed ID: 19727014 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Caputo F, Mello MT, Denadai BS. Oxygen uptake kinetics and time to exhaustion in cycling and running: a comparison between trained and untrained subjects. Arch Physiol Biochem. 2003;111(5):461466. PubMed ID: 16026035 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Billat V, Faina M, Sardella F, et al. . A comparison of time to exhaustion at VO2max in elite cyclists, kayak paddlers, swimmers and runners. Ergonomics. 1996;39(2):267277. PubMed ID: 8851531 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Macnaughton L, Croft R, Pennicott J, Long T. The 5 and 15 minute runs as predictors of aerobic capacity in high school students. J Sports Med Phys Fitness. 1990;30(1):2428. PubMed ID: 2366531

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cooper K, Shafer A. Validity and reliability of the polar A300’s fitness test feature to predict VO2max. Int J Exerc Sci. 2019;12(4):393401.

  • 15.

    Dexheimer JD, Brinson SJ, Pettitt RW, Schroeder ET, Sawyer BJ, Jo E. Predicting maximal oxygen uptake using the 3-minute all-out test in high-intensity functional training athletes. Sports. 2020;8(12):155. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Passfield L, Hopker J, Jobson S, Friel D, Zabala M. Knowledge is power: issues of measuring training and performance in cycling. J Sports Sci. 2017;35(14):14261434. PubMed ID: 27686573 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sitko S, Cirer-Sastre R, Corbi F, López-Laval I. Power assessment in road cycling: a narrative review. Sustainability. 2020;12(12):5216. doi:

  • 18.

    Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):7084. PubMed ID: 10647532 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lucía A, Hoyos J, Santalla A, Pérez M, Chicharro JL. Curvilinear VO2: power output relationship in a ramp test in professional cyclists: possible association with blood hemoglobin concentration. Jpn J Physiol. 2002;52(1):95103. PubMed ID: 12047807 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Muniz-Pumares D, Pedlar C, Godfrey R, Glaister M. The effect of the oxygen uptake-power output relationship on the prediction of supramaximal oxygen demands. J Sports Med Phys Fitness. 2017;57(1–2):17. PubMed ID: 26564270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lamberts RP, Lambert MI, Swart J, Noakes TD. Allometric scaling of peak power output accurately predicts time trial performance and maximal oxygen consumption in trained cyclists. Br J Sports Med. 2012;46(1):3641. PubMed ID: 21821613 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lucía A, Rivero JLL, Pérez M, et al. . Determinants of V ˙O2 kinetics at high power outputs during a ramp exercise protocol. Med Sci Sports Exerc. 2002;34(2):326331. PubMed ID: 11828244 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111122. PubMed ID: 23428482 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Mcnaughton LR, Roberts S, Bentley DJ. The relationship among peak power output, lactate threshold, and short-distance cycling performance. J Strength Cond Res. 2006;20(1):157161. PubMed ID: 16506862 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Allen H, Coggan A. Workout guide. In: Jardine R, ed. Training and Racing With a Power Meter. Boulder, CO: VeloPress; 2019:341.

  • 26.

    Tacx International. 2021. https://tacx.com/es/producto/neo-2t-smart/. Accessed February 4, 2021.

  • 27.

    Williams N. The Borg rating of perceived exertion (RPE) scale. Occup Med. 2017;67(5):404405. doi:

  • 28.

    Bürkner PC. Brms: an R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):128. doi:

  • 29.

    Piironen J, Vehtari A. Comparison of Bayesian predictive methods for model selection. Stat Comput. 2017;27(3):711735. doi:

  • 30.

    CRAN. CRAN—Package projpred. 2020. https://cran.r-project.org/web/packages/projpred/index.html. Accessed November 19, 2020.

  • 31.

    Loo. 2020. Efficient leave-one-out cross-validation and WAIC for Bayesian models. https://mc-stan.org/loo/. Accessed November 19, 2020.

  • 32.

    Gelman A, Goodrich B, Gabry J, Vehtari A. R-squared for Bayesian regression models. Am Stat. 2019;73(3):307309. doi:

  • 33.

    Sanders D, Taylor RJ, Myers T, Akubat I. A field-based cycling test to assess predictors of endurance performance and establishing training zones. J Strength Cond Res. 2020;34(12):34823488. PubMed ID: 28368958 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Eston RG, Faulkner JA, Mason EA, Parfitt G. The validity of predicting maximal oxygen uptake from perceptually regulated graded exercise tests of different durations. Eur J Appl Physiol. 2006;97(5):535541. PubMed ID: 16779551 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sallet P, Mathieu R, Fenech G, Baverel G. Physiological differences of elite and professional road cyclists related to competition level and rider specialization. J Sports Med Phys Fitness. 2006;46(3):361365. PubMed ID: 16998438

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    González-Haro C, Galilea PA, Drobnic F, Escanero JF. Validation of a field test to determine the maximal aerobic power in triathletes and endurance cyclists. Br J Sports Med. 2007;41(3):174179. PubMed ID: 17178775 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Santtila M, Häkkinen K, Pihlainen K, Kyröläinen H. Comparison between direct and predicted maximal oxygen uptake measurement during cycling. Mil Med. 2013;178(2):234238. PubMed ID: 23495472 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Astorino TA, McMillan DW, Edmunds RM, Sanchez E. Increased cardiac output elicits higher VO2max in response to self-paced exercise. Appl Physiol Nutr Metab. 2015;40(3):223229. PubMed ID: 25682980 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Foster C, Green MA, Snyder AC, Thompson NN. Physiological responses during simulated competition. Med Sci Sports Exerc. 1993;25(7):877882. PubMed ID: 8350712 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Chidnok W, Dimenna FJ, Bailey SJ. VO2max is not altered by self-pacing during incremental exercise. Eur J Appl Physiol. 2013;113(2):529539. PubMed ID: 22941093 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Maier T, Schmid L, Müller B, Steiner T, Wehrlin J. Accuracy of cycling power meters against a mathematical model of treadmill cycling. Int J Sports Med. 2017;38(6):456461. PubMed ID: 28482367 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Bertucci W, Grappe F, Groslambert A. Laboratory versus outdoor cycling conditions: differences in pedaling biomechanics. J Appl Biomech. 2007;23(2):8792. PubMed ID: 17603128 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Jeffries O, Waldron M, Patterson SD, Galna B. An analysis of variability in power output during indoor and outdoor cycling time trials. Int J Sports Physiol Perform. 2019;14(9):12731279. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Pierce SJ, Hahn AG, Davie A, Lawton EW. Prolonged incremental tests do not necessarily compromise V ˙O2max in well-trained athletes. J Sci Med Sport. 1999;2(4):356363. PubMed ID: 10710013 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(5):15581564. PubMed ID: 6643191 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Roffey DM, Byrne NM, Hills AP. Effect of stage duration on physiological variables commonly used to determine maximum aerobic performance during cycle ergometry. J Sports Sci. 2007;25(12):13251335. PubMed ID: 17786685 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Pollock ML, Bohannon RL, Cooper KH, et al. . A comparative analysis of four protocols for maximal treadmill stress testing. Am Heart J. 1976;92(1):3946. PubMed ID: 961576 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Zhang YY, Johnson MC, Chow N, Wasserman K. Effect of exercise testing protocol on parameters of aerobic function. Med Sci Sports Exerc. 1991;23(5):625630. PubMed ID: 2072842 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Schaun GZ. The maximal oxygen uptake verification phase: a light at the end of the tunnel? Sport Med—Open. 2017;3(1):44. doi:

  • 50.

    Nolan PB, Beaven ML, Dalleck L. Comparison of intensities and rest periods for VO2max verification testing procedures. Int J Sports Med. 2014;35(12):10241029. PubMed ID: 24886925 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Pettitt RW, Jamnick NA. Commentary on “measurement of the maximum oxygen uptake V ˙O2max : V ˙O 2peak is no longer acceptable.” J Appl Physiol. 2017;123(3):696. PubMed ID: 28947630 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Lucía A, Hoyos J, Santalla A, Pérez M, Chicharro JL. Kinetics of VO2 in professional cyclists. Med Sci Sports Exerc. 2002;34(2):320325. PubMed ID: 11828243

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1685 1685 528
Full Text Views 33 33 6
PDF Downloads 36 36 8