Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: Fatigue has previously been investigated in trail running by comparing maximal isometric force before and after the race. Isometric contractions may not entirely reflect fatigue-induced changes, and therefore dynamic evaluation is warranted. The aim of the present study was to compare the magnitude of the decrement of maximal isometric force versus maximal power, force, and velocity after trail running races ranging from 40 to 170 km. Methods: Nineteen trail runners completed races shorter than 60 km, and 21 runners completed races longer than 100 km. Isometric maximal voluntary contractions (IMVCs) of knee extensors and plantar flexors and maximal 7-second sprints on a cycle ergometer were performed before and after the event. Results: Maximal power output (P max; −14% [11%], P < .001), theoretical maximum force (F 0; −11% [14%], P < .001), and theoretical maximum velocity (−3% [8%], P = .037) decreased significantly after both races. All dynamic parameters but theoretical maximum velocity decreased more after races longer than 100 km than races shorter than 60 km (P < .05). Although the changes in IMVCs were significantly correlated (P < .05) with the changes in F 0 and P max, reductions in IMVCs for knee extensors (−29% [16%], P < .001) and plantar flexors (−26% [13%], P < .001) were larger (P < .001) than the reduction in P max and F 0. Conclusions: After a trail running race, reductions in isometric versus dynamic forces were correlated, yet they are not interchangeable because the losses in isometric force were 2 to 3 times greater than the reductions in P max and F 0. This study also shows that the effect of race distance on fatigue measured in isometric mode is true when measured in dynamic mode.

Koral, Imbert, Besson, Kennouche, Rossi, and Millet are with the Laboratoire Interuniversitaire de Biologie de la Motricité, and Fanget, the Laboratoire SNA-EPIS, Univ Lyon, UJM-Saint-Etienne, Saint-Etienne, France. Parent is with the Dept of Biological Sciences, Université du Québec à Montréal (UQÀM), Montreal, QC, Canada, and CHU Sainte-Justine (CRME) Montréal, QC, Canada. Foschia is with the Dept of Clinical and Exercise Physiology, Sports Medicine Unit, Faculty of Medicine, University Hospital of Saint-Etienne, Saint-Etienne, France. Millet is also with the Inst Universitaire de France, Paris, France.

Millet (guillaume.millet@univ-st-etienne.fr) is corresponding author.
  • 1.

    Bigland-Ritchie B, Furbush F, Woods JJ. Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol. 1986;61(2):421429. PubMed ID: 3745035 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cross MR, Brughelli M, Samozino P, Morin JB. Methods of power-force-velocity profiling during sprint running: a narrative review. Sports Med. 2017;47(7):12551269. PubMed ID: 27896682 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Busko K. Power-velocity characteristics and jumping abilities in male combat athletes. Hum Mov. 2016;17(3):181184.

  • 5.

    Nikolaidis PT, Torres-Luque G, Chtourou H, Clemente-Suarez VJ, Ramirez-Velez R, Heller J. Comparison between jumping vs. cycling tests of short-term power in elite male handball players: the effect of age. Mov Sports Sci Sci Mot. 2016;91(1):93101. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Nikolaidis PT, Papadopoulos VE. Cardiorespiratory power and force-velocity characteristics in road cycling: the effect of aging and underlying physiological mechanisms. Med Sport. 2011;15:6874.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Nikolaidis PT, Knechtle B. Force-velocity characteristics and maximal anaerobic power in male recreational marathon runners. Res Sports Med. 2019;28(1):99110. PubMed ID: 31030556 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    García-Ramos A, Torrejón A, Feriche B, et al. Selective effects of different fatigue protocols on the function of upper body muscles assessed through the force-velocity relationship. Eur J Appl Physiol. 2018;118(2):439447. PubMed ID: 29242994 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    González-Hernández JM, Jimenez-Reyes P, Janicijevic D, Tufano JJ, Marquez G, Garcia-Ramos A. Effect of different interset rest intervals on mean velocity during the squat and bench press exercises  [published online June 22, 2020]. Sports Biomech. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Temesi J, Rupp T, Martin V, et al. Central fatigue assessed by transcranial magnetic stimulation in ultratrail running. Med Sci Sports Exerc. 2014;46(6):11661175. PubMed ID: 24195865 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Millet GY, Tomazin K, Verges S, et al. Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One. 2011;6(2):e17059. PubMed ID: 21364944 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Morris MG, Dawes H, Howells K, Scott OM, Cramp M, Izadi H. Alterations in peripheral muscle contractile characteristics following high and low intensity bouts of exercise. Eur J Appl Physiol. 2012; 112(1):337343. PubMed ID: 21556817 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Temesi J, Arnal PJ, Davranche K, et al. Does central fatigue explain reduced cycling after complete sleep deprivation? Med Sci Sports Exerc. 2013;45(12):22432253. PubMed ID: 23760468 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-dependent contribution of neuromuscular fatigue after constant-load cycling. Med Sci Sports Exerc. 2016;48(9):17511760. PubMed ID: 27187101 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Cheng AJ, Rice CL. Fatigue and recovery of power and isometric torque following isotonic knee extensions. J Appl Physiol. 2005;99(4):14461452. PubMed ID: 15976360 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Babault N, Desbrosses K, Fabre MS, Michaut A, Pousson M. Neuromuscular fatigue development during maximal concentric and isometric knee extensions. J Appl Physiol. 2006;100(3):780785. PubMed ID: 16282433 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Cheng AJ, Rice CL. Isometric torque ad shortening velocity following fatigue and recovery of different voluntary tasks in the dorsiflexors. Appl Physiol Nutr Metab. 2009;34(5):866874. PubMed ID: 19935848 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Krüger RL, Aboodarda SJ, Samozino P, Rice CL, Millet GY. Isometric versus dynamic measurements of fatigue: does age matter? A meta-analysis. Med Sci Sports Exerc. 2018;50(10):21322144. PubMed ID: 29787475 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Krüger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and recovery measured with dynamic properties versus isometric force: effects of exercise intensity. J Exp Biol. 2019;222(9):jeb197483. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Morel B, Clémençon M, Rota S, et al. Contraction velocity influence the magnitude and etiology of neuromuscular fatigue during repeated maximal contractions. Scand J Med Sci Sports 2015;25(5):e432e441. PubMed ID: 25556533 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons?: the flush model. Sports Med. 2011;41(6):489506. PubMed ID: 21615190 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Temesi J, Arnal PJ, Rupp T, et al. Are females more resistant to extreme neuromuscular fatigue? Med Sci Sports Exerc. 2015;47(7):13721382. PubMed ID: 25304334 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Krüger RL, Peyrard A, di Domenico H, Rupp T, Millet GY, Samozino P. Optimal load for a torque-velocity relationship test during cycling. Eur J Appl Physiol. 2020;120(11):24552466. PubMed ID: 32816143 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Arsac LM, Belli A, Lacour JR. Muscle function during brief maximal exercise: accurate measurements on a friction-loaded cycle ergometer. Eur J Appl Physiol. 1996;74(1–2):100106. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Morin JB, Belli A. A simple method for measurement of maximal downstroke power on friction-loaded cycle ergometer. J Biomech. 2004;37(1):141145. PubMed ID: 14672578 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Vandewalle H, Peres G, Heller J, Panel J, Monod H. Force-velocity relationship and maximal power on a cycle ergometer: correlation with the height of a vertical jump. Eur J Appl Physiol. 1987;56(6):650656. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Fanget M, Rossi J, Samozino P, et al. Dynamic force production capacities between coronary artery disease patients vs. healthy participants on a cycle ergometer. Front Physiol. 2020;10:1639. PubMed ID: 32038306 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol. 2011;589(3):711725. PubMed ID: 21135051 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Giovanelli N, Biasutti L, Salvadego D, Alemayehu HK, Grassi B, Lazzer S. Changes in skeletal muscle oxidative capacity after a trail running race. Int J Sports Physiol Perform. 2020;15(2):278284. PubMed ID: 31188647 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G. Alterations of neuromuscular function after an ultramarathon. J Appl Physiol. 2002;92(2):486492. PubMed ID: 11796655 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Millet GY, Martin V, Lattier G, Ballay Y. Mechanisms contributing to knee extensor strength loss after prolonged running exercise. J Appl Physiol. 2003;94(1):193198. PubMed ID: 12391039 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Besson T, Rossi J, Marechal M, et al. Neuromuscular fatigue and recovery after a single vs multi-stage mountain race of the same distance. Med Sci Sports Exerc. 2020;52(8):16911698. PubMed ID: 32079919 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    García-Ramos A, Torrejón A, Morales-Artacho AJ, Pérez-Castilla A, Jaric S. Optimal resistive forces for maximizing the reliability of leg muscles’ capacities tested on a cycle ergometer. J Appl Biomech. 2018;34(1):4752. PubMed ID: 28952867 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 915 915 326
Full Text Views 135 135 38
PDF Downloads 146 146 40