Validity of Force–Velocity Profiling Assessed With a Pneumatic Leg Press Device

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The aim of this study was to examine the concurrent validity of force–velocity (FV) variables assessed across 5 Keiser leg press devices. Methods: A linear encoder and 2 independent force plates (MuscleLab devices) were mounted on each of the 5 leg press devices. A total of 997 leg press executions, covering a wide range of forces and velocities, were performed by 14 participants (29 [7] y, 181 [5] cm, 82 [8] kg) across the 5 devices. Average and peak force, velocity, and power values were collected simultaneously from the Keiser and MuscleLab devices for each repetition. Individual FV profiles were fitted to each participant from peak and average force and velocity measurements. Theoretical maximal force, velocity, and power were deduced from the FV relationship. Results: Average and peak force and velocity had a coefficient of variation of 1.5% to 8.6%, near-perfect correlations (.994–.999), and a systematic bias of 0.7% to 7.1% when compared with reference measurements. Average and peak power showed larger coefficient of variations (11.6% and 17.2%), despite excellent correlations (.977 and .952), and trivial to small biases (3.9% and 8.4%). Extrapolated FV variables showed near-perfect correlations (.983–.997) with trivial to small biases (1.4%–11.2%) and a coefficient of variation of 1.4% to 5.9%. Conclusions: The Keiser leg press device can obtain valid measurements over a wide range of forces and velocities across different devices. To accurately measure power, theoretical maximal power calculated from the FV profile is recommended over average and peak power values from single repetitions, due to the lower random error observed for theoretical maximal power.

Lindberg and Bjørnsen are with the Dept of Sports Science and Physical Education, Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway. Eythorsdottir, Gløersen, Seynnes, and Paulsen are with the Norwegian School of Sport Sciences, Oslo, Norway. Lindberg, Solberg, Bjørnsen, and Paulsen are with the Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway.

Lindberg (kolbjorn.a.lindberg@uia.no) and Eythorsdottir (ingrid.eythorsdottir@hotmail.com) are corresponding authors.

Supplementary Materials

    • Supplementary content 1 (pdf 88 KB)
    • Supplementary figure 1 (pdf 428 KB)
    • Supplementary figure 2 (pdf 193 KB)
    • Supplementary table 1 (pdf 244 KB)
  • 1.

    Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perform. 2006;1(2):7483. PubMed ID: 19114741 doi:

  • 2.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    García-Ramos A, Jaric S. Two-point method: a quick and fatigue-free procedure for assessment of muscle mechanical capacities and the 1 repetition maximum. J Strength Cond Res. 2018;40(2):5466. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Jaric S. Force-velocity relationship of muscles performing multi-joint maximum performance Tasks. Int J Sports Med. 2015;36(9):699704. PubMed ID: 25806588 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Colyer SL, Stokes KA, Bilzon JLJ, Holdcroft D, Salo AIT. Training-related changes in force-power profiles: implications for the skeleton start. Int J Sports Physiol Perform. 2018;13(4):412419. PubMed ID: 28872389 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Djuric S, Cuk I, Sreckovic S, Mirkov D, Nedeljkovic A, Jaric S. Selective effects of training against weight and inertia on muscle mechanical properties. Int J Sports Physiol Perform. 2016;11(7):927932. PubMed ID: 26788908 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jimenez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2016;7:677. PubMed ID: 28119624

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin JB. Force-velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505510. PubMed ID: 24227123 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force-velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2):313322. PubMed ID: 21775909 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lindberg K, Solberg P, Bjørnsen T, et al. . Force-velocity profiling in athletes: reliability and agreement across methods. PLoS One. 2021;16(2):e0245791. PubMed ID: 33524058 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    García-Ramos A, Pérez-Castilla A, Morales-Artacho AJ, et al. . Force-velocity relationship in the countermovement jump exercise assessed by different measurement methods. J Hum Kinet. 2019;67(1):3747. PubMed ID: 31523305 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wade L, Lichtwark GA, Farris DJ. The influence of added mass on muscle activation and contractile mechanics during submaximal and maximal countermovement jumping in humans. J Exp Biol. 2019;222(2):jeb194852. PubMed ID: 30651318 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    García-Ramos A, Feriche B, Pérez-Castilla A, Padial P, Jaric S. Assessment of leg muscles mechanical capacities: which jump, loading, and variable type provide the most reliable outcomes? Eur J Sport Sci. 2017;17(6):690698. PubMed ID: 28338423 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Valenzuela PL, Sánchez-Martínez G, Torrontegi E, Vázquez-Carrion J, Montalvo Z, Haff GG. Should we base training prescription on the force–velocity profile: exploratory study of its between-day reliability and differences between methods. Int J Sports Physiol Perform. Published online February 27, 2021. doi:10.1123/ijspp.2020-0308

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jiménez-Reyes P, Samozino P, Cuadrado-Peñafiel V, Conceição F, González-Badillo JJ, Morin JB. Effect on countermovement on power-force-velocity profile. Eur J Appl Physiol. 2014;114(11):22812288. PubMed ID: 25048073 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cuk I, Markovic M, Nedeljkovic A, Ugarkovic D, Kukolj M, Jaric S. Force-velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps. Eur J Appl Physiol. 2014;114(8):17031714. PubMed ID: 24819449 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Frost DM, Cronin J, Newton RU. A biomechanical evaluation of resistance: fundamental concepts for training and sports performance. Sports Med. 2010;40(4):303326. PubMed ID: 20364875 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Grendstad H, Nilsen AK, Rygh CB, et al. . Physical capacity, not skeletal maturity, distinguishes competitive levels in male Norwegian U14 soccer players. Scand J Med Sci Sports. 2020;30(2):254263. PubMed ID: 31605640 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hackett DA, Wilson GC, Mitchell L, et al. . Effect of training phase on physical and physiological parameters of male powerlifters. Sports. 2020;8(8):106. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cherup NP, Buskard AN, Strand KL, et al. . Power vs strength training to improve muscular strength, power, balance and functional movement in individuals diagnosed with Parkinson’s disease. Exp Gerontol. 2019;128:110740. PubMed ID: 31648006 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Balachandran AT, Gandia K, Jacobs KA, Streiner DL, Eltoukhy M, Signorile JF. Power training using pneumatic machines to improve muscle power in older adults. Exp Gerontol. 2017;98:134142. PubMed ID: 28804046 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Redden J, Stokes K, Williams S. Establishing the reliability and limits of meaningful change of lower limb strength and power measures during seated leg press in elite soccer players. J Sports Sci Med. 2018;17(4):539546. PubMed ID: 30479521

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Beckham G, Suchomel T, Mizuguchi S. Force plate use in performance monitoring and sport science testing. New Stud Athl. 2014;29(3):2537.

    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2017;21:3644.

  • 25.

    Gathercole R, Sporer B, Stellingwerff T, Sleivert G. Alternative countermovement-jump analysis to quantify acute neuromuscular fatigue. Int J Sports Physiol Perform. 2015;10(1):8492. PubMed ID: 24912201 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:

  • 27.

    Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31(3):211234. PubMed ID: 11286357 doi:

  • 28.

    Taylor KL, Cronin J, Gill ND, Chapman DW, Sheppard J. Sources of variability in iso-inertial jump assessments. Int J Sports Physiol Perform. 2010;5(4):546558. PubMed ID: 21266738 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Hopkins WG. A spreadsheet for combining outcomes from several subject groups. Sportscience. 2017;21:5154.

All Time Past Year Past 30 Days
Abstract Views 559 559 191
Full Text Views 43 43 3
PDF Downloads 15 15 2