Increasing Oxygen Uptake in Cross-Country Skiers by Speed Variation in Work Intervals

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: Accumulated time at a high percentage of peak oxygen consumption (VO2peak) is important for improving performance in endurance athletes. The present study compared the acute physiological and perceived effects of performing high-intensity intervals with roller ski double poling containing work intervals with (1) fast start followed by decreasing speed (DEC), (2) systematic variation in exercise intensity (VAR), and (3) constant speed (CON). Methods: Ten well-trained cross-country skiers (double-poling VO2peak 69.6 [3.5] mL·min−1·kg−1) performed speed- and duration-matched DEC, VAR, and CON on 3 separate days in a randomized order (5 × 5-min work intervals and 3-min recovery). Results: DEC and VAR led to longer time ≥90% VO2peak (P = .016 and P = .033, respectively) and higher mean %VO2peak (P = .036, and P = .009) compared with CON, with no differences between DEC and VAR (P = .930 and P = .759, respectively). VAR, DEC, and CON led to similar time ≥90% of peak heart rate (HRpeak), mean HR, mean breathing frequency, mean ventilation, and mean blood lactate concentration ([La]). Furthermore, no differences between sessions were observed for perceptual responses, such as mean rate of perceived exertion, session rate of perceived exertion or pain score (all Ps > .147). Conclusions: In well-trained XC skiers, DEC and VAR led to longer time ≥90% of VO2peak compared with CON, without excessive perceptual effort, indicating that these intervals can be a good alternative for accumulating more time at a high percentage of VO2peak and at the same time mimicking the pronounced variation in exercise intensities experienced during XC-skiing competitions.

The authors are with the Inland Norway University of Applied Sciences, Lillehammer, Norway.

Rønnestad (bent.ronnestad@inn.no) is corresponding author.
  • 1.

    Holmberg HC. The elite cross–country skier provides unique insights into human exercise physiology. Scand J Med Sci Sports. 2015;25(suppl 4):100109. doi:

  • 2.

    Sandbakk Ø, Holmberg HC. Physiological capacity and training routines of elite cross-country skiers: approaching the upper limits of human endurance. Int J Sports Physiol Perform. 2017;12(8):10031011. PubMed ID: 28095083 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Wenger HA, Bell GJ. The interactions of intensity, frequency and duration of exercise training in altering cardiorespiratory fitness. Sports Med. 1986;3(5):346356. PubMed ID: 3529283 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Midgley AW, Mc Naughton LR. Time at or near VO2max during continuous and intermittent running. A review with special reference to considerations for the optimisation of training protocols to elicit the longest time at or near VO2max. J Sports Med Phys Fitness. 2006;46(1):114. PubMed ID: 16596093

    • Search Google Scholar
    • Export Citation
  • 5.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013;43(5):313338. PubMed ID: 23539308 doi:

  • 6.

    Solli GS, Tønnessen E, Sandbakk Ø. The training characteristics of the world’s most successful female cross-country skier. Front Physiol. 2017;8:1069. doi:

  • 7.

    Losnegard T. Energy system contribution during competitive cross-country skiing. Eur J Appl Physiol. 2019;119(8):16751690. PubMed ID: 31076890 doi:

  • 8.

    Zadow EK, Gordon N, Abbiss CR, Peiffer JJ. Pacing, the missing piece of the puzzle to high-intensity interval training. Int J Sports Med. 2015;36(3):215219. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Lisbôa FD, Salvador AF, Raimundo JA, Pereira KL, de Aguiar RA, Caputo F. Decreasing power output increases aerobic contribution during low-volume severe-intensity intermittent exercise. J Strength Cond Res. 2015;29(9):24342440. PubMed ID: 26308828 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Wilson DF. Regulation of metabolism: the rest-to-work transition in skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309(9):E793E801. PubMed ID: 26394666 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Jones AM, Wilkerson DP, Vanhatalo A, Burnley M. Influence of pacing strategy on O2 uptake and exercise tolerance. Scand J Med Sci Spor. 2008;18(5):615626. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Bailey SJ, Vanhatalo A, DiMenna FJ, Wilkerson DP, Jones AM. Fast-start strategy improves VO2 kinetics and high-intensity exercise performance. Med Sci Sports Exerc. 2011;43(3):457467. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bossi AH, Mesquida C, Passfield L, Rønnestad BR, Hopker JG. Optimizing interval training through power-output variation within the work intervals. Int J Sports Physiol Perform. 2020;15(7):982989. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Rønnestad BR, Rømer T, Hansen J. Increasing oxygen uptake in well-trained cross-country skiers during work intervals with a fast start. Int J Sports Physiol Perform. 2019;15(3):17. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Midgley AW, McNaughton LR, Carroll S. Physiological determinants of time to exhaustion during intermittent treadmill running at vV·O2max. Int J Sports Med. 2007;28(4):273280. PubMed ID: 17024633 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Caputo F, Denadai BS. Exercise mode affects the time to achieve VO2max without influencing maximal exercise time at the intensity associated with VO2max in triathletes. Int J Sports Med. 2006;27(10):798803. PubMed ID: 16586327 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 2000;89(3):899907. PubMed ID: 10956332 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sylta O, Tønnessen E, Seiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9(1):100107. PubMed ID: 24408353 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sandbakk Ø, Holmberg H-C, Leirdal S, Ettema G. Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers. Eur J Appl Physiol. 2010;109(3):473481. PubMed ID: 20151149 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:

  • 21.

    Cook DB, O’Connor PJ, Eubanks SA, Smith JC, Lee M. Naturally occurring muscle pain during exercise: assessment and experimental evidence. Med Sci Sports Exerc. 1997;29(8):9991012. PubMed ID: 9268956 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Billat V, Petot H, Karp JR, Sarre G, Morton RH, Mille-Hamard L. The sustainability of VO2max: effect of decreasing the workload. Eur J Appl Physiol. 2013;113(2):385394. PubMed ID: 22752344 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Margaria R, Manglli F, Cuttica F, Cerretelli P. The kinetics of the oxygen consumption at the onset of muscular exercise in man. Ergonomics. 1965;8(1):4954. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Vaccari F, Giovanelli N, Lazzer S. High-intensity decreasing interval training (HIDIT) increases time above 90% VO2peak. Eur J Appl Physiol. 2020;120(11):23972405. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Heinonen I, Nesterov SV, Kemppainen J, Fujimoto T, Knuuti J, Kalliokoski KK. Increasing exercise intensity reduces heterogeneity of glucose uptake in human skeletal muscles. PLoS One. 2012;7(12):e52191. PubMed ID: 23284929 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hodson-Tole EF, Wakeling JM. Motor unit recruitment for dynamic tasks: current understanding and future directions. J Comp Physiol B. 2009;179(1):5766. PubMed ID: 18597095 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O2 uptake: constant work rate vs. all-out sprint exercise. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R700R707. PubMed ID: 21160059 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Jones AM, Grassi B, Christensen PM, Krustrup P, Bangsbo J, Poole DC. Slow component of VO2 kinetics: mechanistic bases and practical applications. Med Sci Sports Exerc. 2011;43(11):20462062. PubMed ID: 21552162 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rossiter HB, Ward SA, Kowalchuk JM, Howe FA, Griffiths JR, Whipp BJ. Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J Physiol. 2002;541(3):9911002. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Nicolò A, Marcora SM, Bazzucchi I, Sacchetti M. Differential control of respiratory frequency and tidal volume during high-intensity interval training. Exp Physiol. 2017;102(8):934949. PubMed ID: 28560751 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nicolò A, Massaroni C, Passfield L. Respiratory frequency during exercise: the neglected physiological measure. Front Physiol. 2017;8:922. doi:

  • 33.

    Thum JS, Parsons G, Whittle T, Astorino TA. High-intensity interval training elicits higher enjoyment than moderate intensity continuous exercise. PLoS One. 2017;12(1):e0166299. PubMed ID: 28076352 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Oliveira BRR, Slama FA, Deslandes AC, Furtado ES, Santos TM. Continuous and high-intensity interval training: which promotes higher pleasure? PLoS One. 2013;8(11):e79965. PubMed ID: 24302993 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Turnes T, De Aguiar RA, Cruz RSDO, Caputo F. Interval training in the boundaries of severe domain: effects on aerobic parameters. Eur J Appl Physiol. 2016;116(1):161169. PubMed ID: 26373721 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Spencer M, Losnegard T, Hallén J, Hopkins WG. Variability and predictability of performance times of elite cross-country skiers. Int J Sports Physiol Perform. 2014;9(1):511. PubMed ID: 23799826 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Theurel J, Lepers R. Neuromuscular fatigue is greater following highly variable versus constant intensity endurance cycling. Eur J Appl Physiol. 2008;103(4):461468. PubMed ID: 18415118 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1333 1333 344
Full Text Views 54 54 13
PDF Downloads 76 76 22