Three-dimensional kinematics and kinetics for a double pendulum model golf swing were determined for 6 subjects, who were filmed by two phase-locked Photosonics cameras. The film was digitally analyzed. Abdel-Aziz and Karara's (1971) algorithm was used to determine three-dimensional spatial coordinates for the segment endpoints. Linear kinematic and kinetic data showed similarities with previous studies. The orientation of the resultant joint force at the wrists was in the direction of motion of the club center of gravity for most of the downswing. Such an orientation of the force vector would tend to prevent wrist uncocking. Indeterminate peak angular velocities for rotations about the X axis were reported. However, these peaks were due to computational instabilities that occurred when the club was perpendicular to the YZ plane. Furthermore, the motion of the club during the downswing was found to be nonplanar. Wrist uncocking appeared to be associated with the resultant joint torque and not the resultant joint force at the wrists. Torques reported in this study were consistent with those reported by Vaughan (1981).