Kinematic Analysis of Skating Technique of Olympic Skiers in the Women's 30-km Race

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The women's 30-km freestyle cross-country race at the 1992 Winter Olympic Games was selected to determine the kinematic differences between more and less successful skiers. Three-dimensional filming techniques were used to capture the movement patterns on level terrain of 8 skiers who placed in the top 50% (Group 1) and 8 skiers who placed in the bottom 50% (Group 2) of the field. The mean cycle velocity for Group 1 was significantly faster (p < .005) than the velocity for Group 2. Significant correlations (p < .05) were found between race velocity and cycle velocity (r = .89) and between cycle length and cycle rate (r = -.82). Group 1 had significantly greater (p < .03) weak-side elbow flexion at pole plant, as well as less (p < .01) weak-side elbow extension and more (p < .05) trunk flexion during poling. The mean cycle velocity differences between Groups 1 and 2 may have been the result of smaller resistive and/or larger propulsive forces.

Robert W. Gregory, Sean E. Humphreys, and Glenn M. Street are with the Human Performance Lab, HaH S102, St. Cloud State University, St. Cloud, MN 56301.

All Time Past Year Past 30 Days
Abstract Views 25 25 3
Full Text Views 1 1 0
PDF Downloads 2 2 0