Discrete pressure sensors were used to examine the influence of shoe construction on the local forces under the foot. Measurements were performed at eight locations under the feet of 22 subjects wearing 19 different models of running shoes. Mechanical properties of shoe soles were assessed with an impacter device. Pressure distribution, ground reaction force, and acceleration data were collected simultaneously during running at 3.3 m/s. Early lateral loading of the rearfoot was followed by increasing medial forefoot loads. In the later phase of pushoff the load was almost entirely carried by the first metatarsal head and the hallux. Substantial differences in plantar foot pressures and relative loads among shoe models indicated that footwear construction has a substantial influence on the loading behavior of the foot during ground contact. Finally, the chosen sensor locations under the foot were found to be adequate to estimate the vertical ground reaction force.