A device has been designed to simultaneously measure the vertical pressure and the anterior-posterior and medial-lateral distributed shearing forces under the plantar surface of the foot. The device uses strain gauge technology and consists of 16 individual transducers (each with a surface area measuring 2.5 × 2.5 cm) arranged in a 4 × 4 array. The sampling frequency is 37 Hz and data may be collected for 2 s. The device was calibrated under both static and dynamic conditions and revealed excellent linearity (±5%), minimal hysteresis (±7.5%), and very good agreement between applied and measured loads (±5%). Vector addition of the distributed loads gave resultant forces that were qualitatively very similar to those obtained from a standard force plate. Data are presented for measurements from the forefoot of 4 diabetic subjects during the initiation of gait, demonstrating that distributed shear and pressure on the sole of the foot can be measured simultaneously.