A Three-Dimensional Biomechanical Analysis of the Cat Ankle Joint Complex: II. Effects of Ankle Joint Orientation on Evoked Isometric Joint Torque

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Muscle actions are often defined within a single anatomical reference plane. Yet animals must control posture and movement within a three-dimensional (3-D) environment, responding to a 3-D array of perturbing forces. Based on information gained regarding the 3-D muscle mechanics at the cat ankle joint complex (companion paper), we decided to study how alterations in the 3-D AJC orientation might affect ankle joint postural control. We used a 6 degree-of-freedom force-moment sensor to assess the affect of ankle joint orientation on the 3-D isometric joint torques evoked by electrical stimulation of muscles crossing the ankle joint complex (AJC) in the deeply anesthetized cat. An orthogonal axis system was established at the designated ankle rotation center, such that pitch (flexion-extension), yaw (abduction-adduction), and roll (inversion-eversion) axis torques were calculated. Experimental results suggest that both the magnitude and sign of extra-sagittal torques from the gastrocnemius muscles are joint angle dependent. Also, the hind limb levering system stabilizes the AJC against large yaw and roll rotations away from the control position.

J.H. Lawrence III is with Center for Biomedical Engineering at the University of Kentucky, Lexington, KY 40506-0070. T.R. Nichols is with the Department of Physiology at Emory University, Atlanta, GA 30322.

All Time Past Year Past 30 Days
Abstract Views 24 22 0
Full Text Views 0 0 0
PDF Downloads 0 0 0