When rising from a chair, older adults have been reported to use a strategy in which the trunk is flexed to a greater extent than young adults, a strategy attributed by some to concerns with the postural stability demands of the task. This study determined the extent to which maximum trunk flexion angle during a self-paced sit-to-stand from a standardized initial position was influenced by the maximum isometric strength of the knee and trunk/hip extensor muscles in older adults. The hypothesis was that the larger maximum trunk flexion angle attained by older adults when rising from a chair is related to the maximum isometric strength of the knee and trunk-hip extensor muscles. To test this hypothesis, maximum voluntary isometric strength of the trunk extensor and knee extensor muscles of 28 older men and women were measured. Trunk motion during the sit-to-stand by these adults was men assessed using motion analysis. Multiple regression was used to characterize the relationship between the maximum trunk flexion angle and maximum isometric knee extensor and trunk extensor muscle strength. The derived relationship was neither statistically significant nor biomechanically meaningful. This result suggests that the trunk flexion angle attained by healthy older adults when rising from a chair from a standardized initial position is not influenced by knee extension and trunk-hip extension strength as measured in the present study.