A Model of Kinematic Variables Determining Height Achieved in Water Polo Boosts

in Journal of Applied Biomechanics
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

A boost is a skill used in water polo to raise the body for the purpose of shooting for goal or passing, or defending against these. The purpose of this study was to investigate kinematic variables contributing to height achieved in a boost. The kinematics of the vertex, shoulders, and lower limbs of 16 players ranging in ability from novice to elite were quantified using three-dimensional videographic techniques. Maximum height of the vertex with respect to water level ranged from 0.50 m to 0.90 m. A multiple regression model comprising the squared maximum resultant foot speed, range of knee joint extension, and initial trunk angle with respect to the horizontal accounted for 74% of the variance in height achieved. Anteroposterior and medio-lateral motions assisted in maintaining foot speed throughout the period of knee extension. The foot orientations and direction of foot motion of the elite players suggested that effective technique involves the use of both drag and lift forces.

The author is with the School of Biomedical and Sports Sciences at Edith Cowan University, Joondalup, Western Australia 6027.

All Time Past Year Past 30 Days
Abstract Views 150 102 5
Full Text Views 6 3 0
PDF Downloads 9 5 0