Experimental Vertical Jump Model Used to Evaluate the Pivot Location in Klap Speed Skates

in Journal of Applied Biomechanics
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

This study used a vertical jump model to simulate the push-off phase for a skater using klap speed skates and evaluated die effects of pivot location and shoe base flexion on energy production. Boards of different lengths and one board with a hinge under the metatarsal heads were attached to the running shoes of volunteers. Six skaters performed 3 maximal effort vertical jumps across 5 different base conditions: running shoe, board that hinged under metatarsal heads, and rigid boards that pivoted with the ground al -25 mm (typical pivot location for klapskales), 0 mm, and +25 mm from the toes. There were no significant differences in total energy at take-off among the 3 rigid base conditions, but there were differences in potential and kinetic energy production. The total and kinetic energy produced at take-off was 9% greater in the hinged base condition than the corresponding rigid base condition. If differences in energy measures from the vertical jump reflect those for skating, a hinged boot base could increase skating speeds by about 3% over the current klap-skales, which have a rigid boot base.

Institute for Sport Science & Medicine, The Orthopedic specialty Hospital, Murray, UT 84107. R.W. Motl is with the Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah 84107.

All Time Past Year Past 30 Days
Abstract Views 53 35 0
Full Text Views 1 1 0
PDF Downloads 2 2 0