A Method for Measuring Euler Rotation Angles and Helical Axis of Upper Arm Motion

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Michigan
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Clinical observation suggests that shoulder pathologies such as rotator cuff disorders and shoulder instability may alter the normal shoulder rhythm or relative motions of the structures comprising the shoulder girdle. The purpose of this study was to assess the accuracy of using a skin-mounted humeral cuff that could be used in vivo to determine Euler rotation angles and the helical axis of motion (HAM) during upper extremity movements. An in vitro model was used to compare the kinematics determined from the externally applied humeral cuff to the kinematics measured directly from the humerus. The upper extremities of five cadavers were moved through several humerus and forearm motion trials. Measurements from the humeral cuff were compared directly to the bone measurements for all trials to determine the accuracy of the Euler rotation angles. In evaluating the HAM, the orientation, location, and magnitude of rotation were compared either to the bone measurements or to the known rotational axis of the testing fixture. Euler rotation angles and the helical axis of motion determined by the measurements taken from the skin-mounted humeral cuff were very similar to those using the measurements from the bone-mounted sensor. The humeral cuff was shown to provide a viable, noninvasive method for determining the Euler rotation angles and helical axis of motion during 3-D humeral movements. The validation makes the humeral cuff a valuable tool for examining the effect of shoulder pathologies on the kinematics of the upper extremity.

S. LaScalza and L.N. Gallo are with the Dept. of Biomedical Engineering, and J.E. Carpenter and R.E. Hughes are with the Dept. of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI 48109-0486. Hughes is also with the Dept. of Biomedical Engineering.