The Effects of Wind and Altitude in the 200-m Sprint

in Journal of Applied Biomechanics
View More View Less
  • 1 Sheffield Hallam University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

A mathematical model is used to determine the effect of wind resistance and altitude on 200-m race times. The model is used to simulate the effect of different wind speeds, wind directions, and lane allocation in the 200-m sprint. For the 200-m event there is a single wind gauge recording only the wind’s component velocity in the straight, and not the wind direction. For record purposes the wind reading should not exceed 2 m/s. It is evident that for the same official wind reading, an athlete may face vastly different conditions. The model estimates that for the same wind reading, the prevailing conditions can produce a time difference of as much as 0.5 s. Results indicate that many legal performances in the 200-m are currently ruled out for record purposes. Some performances which are officially wind-assisted have in fact been hindered by an overall head wind when it is averaged throughout the race. Conversely, some performances which are run into a head wind in the straight have benefited from an overall tail wind. We estimate that, on average, for a 2-m/s wind blowing down the straight, the 200-m runner benefits from an overall tail wind of only 0.95 m/s. The lower air density at an altitude of 1,500 meters produces an advantage of 0.11 s in the 200-m, which equates to a 2-m/s tail wind at sea level blowing directly down the straight. Correction estimates are provided for the combined effect of both wind and altitude in 200-m races. A new all-time world top five ranking list for men and women is produced for the 200-m event, corrected for wind and altitude effects.

The author is with the School of Computing and Management Sciences, Sheffield Hallam University, Sheffield, U.K., S1 1WB.

All Time Past Year Past 30 Days
Abstract Views 618 539 10
Full Text Views 5 2 0
PDF Downloads 6 2 0