The Margin for Error When Releasing the Asymmetric Bars for Dismounts

in Journal of Applied Biomechanics
View More View Less
  • 1 Loughborough University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

It has previously been shown that male gymnasts using the “scooped” giant circling technique were able to flatten the path followed by their mass center, resulting in a larger margin for error when releasing the high bar (Hiley & Yeadon, 2003a). The circling technique prior to performing double layout somersault dismounts from the asymmetric bars in women's artistic gymnastics appears to be similar to the “traditional” technique used by some male gymnasts on the high bar. It was speculated that as a result the female gymnasts would have margins for error similar to those of male gymnasts who use the traditional technique. However, it is unclear how the technique of the female gymnasts is affected by the need to avoid the lower bar. A 4-segment planar simulation model of the gymnast and upper bar was used to determine the margins for error when releasing the bar for 9 double layout somersault dismounts at the Sydney 2000 Olympics. The elastic properties of the gymnast and bar were modeled using damped linear springs. Model parameters, primarily the inertia and spring parameters, were optimized to obtain a close match between simulated and actual performances in terms of rotation angle (1.2°), bar displacement (0.011 m), and release velocities (<1%). Each matching simulation was used to determine the time window around the actual point of release for which the model had appropriate release parameters to complete the dismount successfully. The margins for error of the 9 female gymnasts (release window 43–102 ms) were comparable to those of the 3 male gymnasts using the traditional technique (release window 79–84 ms).

The authors are with the School of Sport and Exercise Sciences, Loughborough University, Loughborough, Leics., LE11 3TU, U.K.

All Time Past Year Past 30 Days
Abstract Views 484 416 71
Full Text Views 4 2 1
PDF Downloads 6 2 0