The Effect of a Repetitive, Fatiguing Lifting Task on Horizontal Ground Reaction Forces

in Journal of Applied Biomechanics
View More View Less
  • 1 North Carolina State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

There are many outdoor work environments that involve the combination of repetitive, fatiguing lifting tasks and less-than-optimal footing (muddy/slippery ground surfaces). The focus of the current research was to evaluate the effects of lifting-induced fatigue of the low back extensors on lifting kinematics and ground reaction forces. Ten participants performed a repetitive lifting task over a period of 8 minutes. As they performed this task, the ground reaction forces and whole body kinematics were captured using a force platform and magnetic motion tracking system, respectively. Fatigue was verified in this experiment by documenting a decrease in the median frequency of the bilateral erector spinae muscles (pretest-posttest). Results indicate significant (p < 0.05) increases in the magnitude of the peak anterior/posterior (increased by an average of 18.3%) and peak lateral shear forces (increased by an average of 24.3%) with increasing time into the lifting bout. These results have implications for work environments such as agriculture and construction, where poor footing conditions and requirements for considerable manual materials handling may interact to create an occupational scenario with an exceptionally high risk of a slip and fall.

The authors are with the Dept. of Industrial Engineering, Box 7906, North Carolina State University, Raleigh, NC, 27695.