Effects of Turn Angle and Pivot Foot on Lower Extremity Kinetics during Walk and Turn Actions

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

This study examined lower extremity joint moments during walk and turn with different turn angles and pivot feet. Seven young adults (age 21 ± 1.3 yrs) were asked to walk at a self-selected speed (1.35 ± 0.15 m/s) and to turn to the right using right (spin turn) and left (step turn) pivot feet at turn angles of 0° (walking straight), 45°, and 90°. Video and forceplate systems were employed for kinematic and kinetic data collection. Inverse dynamics approach was used to compute joint moments using segmental kinematics, ground reaction forces, and moments. The participants decreased their forward speed by increasing the ankle plantar flexion moment as the turn angle increased. The peak ankle plantar flexion moment during the braking phase increased with increasing turn angle for both spin and step turns. Ankle invertor moments were observed only in spin turns, suggesting that more ankle muscles are involved in spin turns than in step turns. The turn angle had a significant effect on the transverse plane moment profiles at the different lower extremity joints. The results suggest that the loading patterns of different anatomical structures in the lower extremity are affected by both turn angle and pivot foot during walk and turn actions.

Dept. of Physical Therapy, Georgia State University, 33 Gilmer St. SE Unit 8, Atlanta, GA 30303

Dept. of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611.

All Time Past Year Past 30 Days
Abstract Views 83 83 4
Full Text Views 7 7 0
PDF Downloads 15 15 0