Computational Determination of the Critical Microcrack Size That Causes a Remodeling Response in a Trabecula: A Feasibility Study

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Bone is a living tissue, which undergoes continuous renewal to repair local defects. Two separate processes, adaptation and remodeling, are involved when a defect appears. The defect produces stress concentrations that provoke regional adaptation, and is gradually repaired, first by resorption and then by deposition of new bone. Using a mathematical formulation of the adaptation mechanism in trabeculae of cancellous bone, we hypothesize that in some cases, where a microcrack is small enough relative to the dimensions of the trabecula, the adaptation response of the whole trabecula may be sufficient to regain homeostatic mechanical conditions (with no need for a remodeling process). The simulation results showed that for trabeculae with nominal length of 900 µm and nominal thickness of 80–800 µm, a microcrack with minimal length of 48 µm and minimal depth of 13% of the trabecula’s thickness was required to initiate a remodeling process. A longer (100 µm) but shallower (depth of 7% of the trabecula’s thickness) crack also triggered remodeling. These computational results support our hypothesis that when a microcrack small enough relative to the dimensions of the trabecula occurs, adaptation of the whole trabecula may be sufficient to regain homeostatic mechanical conditions with no need for a local remodeling process.

The authors are with the Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.

All Time Past Year Past 30 Days
Abstract Views 25 22 5
Full Text Views 1 1 0
PDF Downloads 2 2 0