Reconstruction of the Human Gastrocnemius Force–Length Curve in Vivo: Part 1—Model-Based Validation of Method

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The muscle fiber force–length relationship has been explained in terms of the cross-bridge theory at the sarcomere level. In vivo, for a physiologically realistic range of joint motion, and therefore range of muscle fiber lengths, only part of the force–length curve may be used; that is, the section of the force– length curve expressed can vary. The purpose of this study was to assess the accuracy of a method for determining the expressed section of the force– length curve for biarticular muscles. A muscle model was used to simulate the triceps surae muscle group. Three model formulations were used so that the gastrocnemius operated over different portions of the force–length curve: the ascending limb, the plateau region, and the descending limb. Joint moment data were generated for a range of joint configurations and from this simulated data the region of the force– length relationship that the gastrocnemius muscle operated over was successfully reconstructed using the algorithm of Herzog and ter Keurs (1988a). Further simulations showed that the correct region of the force–length curve was accurately reconstructed even in the presence of random and systematic noise generated to reflect the effects of sampling errors, and incomplete muscle activation.

Winter is with the Department of Sport and Exercise Science, Aberystwyth University, UK, and Challis is with the Biomechanics Laboratory, Department of Kinesiology, Pennsylvania State University.

All Time Past Year Past 30 Days
Abstract Views 32 32 1
Full Text Views 4 4 0
PDF Downloads 4 4 0