Biomechanical Comparison of the Track Start and the Modified One-Handed Track Start in Competitive Swimming: An Intervention Study

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

This study compared the conventional track and a new one-handed track start in elite age group swimmers to determine if the new technique had biomechanical implications on dive performance. Five male and seven female GB national qualifiers participated (mean ± SD: age 16.7 ± 1.9 years, stretched stature 1.76 ± 0.8 m, body mass 67.4 ± 7.9 kg) and were assigned to a control group (n = 6) or an intervention group (n = 6) that learned the new one-handed dive technique. All swimmers underwent a 4-week intervention comprising 12 ± 3 thirty-minute training sessions. Video cameras synchronized with an audible signal and timing suite captured temporal and kinematic data. A portable force plate and load cell handrail mounted to a swim starting block collected force data over 3 trials of each technique. A MANCOVA identified Block Time (BT), Flight Time (FT), Peak Horizontal Force of the lower limbs (PHF) and Horizontal Velocity at Take-off (Vx) as covariates. During the 10-m swim trial, significant differences were found in Time to 10 m (TT10m), Total Time (TT), Peak Vertical Force (PVF), Flight Distance (FD), and Horizontal Velocity at Take-off (Vx) (p < .05). Results indicated that the conventional track start method was faster over 10 m, and therefore may be seen as a superior start after a short intervention. During training, swimmers and coaches should focus on the most statistically significant dive performance variables: peak horizontal force and velocity at take-off, block and flight time.

Galbraith, Scurr, Hencken, and Wood are with the Department of Sport and Exercise Science, University of Portsmouth, Portsmouth, U.K., and Graham-Smith is with Centre for Rehabilitation and Human Performance Research, University of Salford, Greater Manchester, U.K.