Torso and Hip Muscle Activity and Resulting Spine Load and Stability while Using the ProFitter 3-D Cross Trainer

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Waterloo
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The ProFitter 3-D Cross Trainer is a labile surface device used in the clinic and claimed to train spine stability. The purpose of this study was to quantify the spine mechanics (compression and shear forces and stability), together with muscle activation mechanics (surface electromyography) of the torso and hip, during three ProFitter exercises. Trunk muscle activity was relatively low while exercising on the device (<25%MVC). Gluteus medius activity was phasic with the horizontal sliding position, especially for an experienced participant. Sufficient spinal stability was achieved in all three exercise conditions. Peak spinal compression values were below 3400 N (maximum 3188 N) and peak shear values were correspondingly low (under 500 N). The exercises challenge whole-body dynamic balance while producing very conservative spine loads. The motion simultaneously integrates hip and torso muscles in a way that appears to ensure stabilizing motor patterns in the spine. This information will assist with clinical decision making about the utility of the device and exercise technique in rehabilitation and training programs.

The authors are with the Spine Biomechanics Laboratory, Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.