The Muscle Force Component in Pedaling Retains Constant Direction across Pedaling Rates

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Changes in pedaling rate during cycling have been found to alter the pedal forces. Especially, the force effectiveness is reduced when pedaling rate is elevated. However, previous findings related to the muscular force component indicate strong preferences for certain force directions. Furthermore, inertial forces (due to limb inertia) generated at the pedal increase with elevated pedaling rate. It is not known how pedaling rate alters the inertia component and subsequently force effectiveness. With this in mind, we studied the effect of pedal rate on the direction of the muscle component, quantified with force effectiveness. Cycle kinetics were recorded for ten male competitive cyclists at five cadences (60–100 rpm) during unloaded cycling (to measure inertia) and at a submaximal load (~260 W). The force effectiveness decreased as a response to increased pedaling rate, but subtracting inertia eliminated this effect. This indicates consistent direction of the muscle component of the foot force.

The authors are with the Human Movement Sciences Programme, Faculty of Social Sciences and Technology Management, Norwegian University of Science and Technology, Trondheim, Norway.