Differences in End-Point Force Trajectories Elicited by Electrical Stimulation of Individual Human Calf Muscles

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The purpose of this study was to investigate the end-point force trajectories of the fibularis longus (FIB), lateral gastrocnemius (LG), and medial gastrocnemius (MG) muscles. Most information about individual muscle function has come from studies that use models based on electromyographic (EMG) recordings. In this study (N = 20 subjects) we used electrical stimulation (20 Hz) to elicit activity in individual muscles, recorded the end-point forces at the foot, and verified the selectivity of stimulation by using magnetic resonance imaging. Unexpectedly, no significant differences were found between LG and MG force directions. Stimulation of LG and MG resulted in downward and medial or lateral forces depending on the subject. We found FIB end-point forces to be significantly different from those of LG and MG. In all subjects, stimulation of FIB resulted in downward and lateral forces. Based on our results, we suggest that there are multiple factors determining when and whether LG or MG will produce a medial or lateral force and FIB consistently plays a significant role in eversion/abduction and plantar flexion. We suggest that the intersubject variability we found is not simply an artifact of experimental or technical error but is functionally relevant and should be addressed in future studies and models.

Giordano is with the Program in Neuroscience, Emory University, Atlanta, GA. Segal is with the Program in Neuroscience, Emory University, Atlanta, GA, and the Division of Physical Therapy, Department of Allied Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC. Abelew is with the Department of Cell Biology, Emory University School of Medicine, Atlanta, GA.