Direct Kinematic Modeling of the Upper Limb During Trunk-Assisted Reaching

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The study proposes a rigid-body biomechanical model of the trunk and whole upper limb including scapula and the test of this model with a kinematic method using a six-dimensional (6-D) electromagnetic motion capture (mocap) device. Large unconstrained natural trunk-assisted reaching movements were recorded in 7 healthy subjects. The 3-D positions of anatomical landmarks were measured and then compared to their estimation given by the biomechanical chain fed with joint angles (the direct kinematics). Thus, the prediction errors was attributed to the different joints and to the different simplifications introduced in the model. Large (approx. 4 cm) end-point prediction errors at the level of the hand were reduced (to approx. 2 cm) if translations of the scapula were taken into account. As a whole, the 6-D mocap seems to give accurate results, except for pronosupination. The direct kinematic model could be used as a virtual mannequin for other applications, such as computer animation or clinical and ergonomical evaluations.

Sylvain Hanneton (Corresponding Author), Svetlana Dedobbeler, Thomas Hoellinger, and Agnès Roby-Brami are with Université Paris Descartes, Paris, and with Laboratoire de Neurophysique et Physiologie, UMR 8119 CNRS, UFR Biomédicale des Saints Pères, Paris, France.