On the Estimate of the Two Dominant Axes of the Knee Using an Instrumented Spatial Linkage

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

This article presents the validation of a technique to assess the appropriateness of a 2 degree-of-freedom model for the human knee, and, in which case, the dominant axes of flexion/extension and internal/external longitudinal rotation are estimated. The technique relies on the use of an instrumented spatial linkage for the accurate detection of passive knee kinematics, and it is based on the assumption that points on the longitudinal rotation axis describe nearly circular and planar trajectories, whereas the flexion/extension axis is perpendicular to those trajectories through their centers of rotation. By manually enforcing a tibia rotation while bending the knee in flexion, a standard optimization algorithm is used to estimate the approximate axis of longitudinal rotation, and the axis of flexion is estimated consequently. The proposed technique is validated through simulated data and experimentally applied on a 2 degree-of-freedom mechanical joint. A procedure is proposed to verify the fixed axes assumption for the knee model. The suggested methodology could be possibly valuable in understanding knee kinematics, and in particular for the design and implant of customized hinged external fixators, which have shown to be effective in knee dislocation treatment and rehabilitation.

Gianluca Gatti is with the Department of Mechanical Engineering, University of Calabria, Cosenza, Italy.

All Time Past Year Past 30 Days
Abstract Views 11 11 4
Full Text Views 0 0 0
PDF Downloads 0 0 0