Walking Strategies Change With Distance From Hill Transition and Scale With Hill Angle

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Individuals must constantly modify their gait patterns to safely transition between different surfaces. The goal of the current study was to determine if gait changes could be detected two steps from a transition, and whether these changes scaled with the angle of the hill. We hypothesized that during the anticipation of uphill walking and the aftereffect of downhill walking, the magnitude of kinetic and electromyography changes would be greatest at steep hill angles and fewer steps from the transition. We collected force and electromy-ography data as participants walked on the level ground before an uphill ramp and after a downhill ramp. As hypothesized, there were significant main effects for both the number of steps and angle of the hill for the first vertical GRF peak, as well as lateral gastrocnemius and vastus lateralis activity. Overall, our results indicate that when transitioning to and from hills, anticipation and aftereffect responses occur at least two steps from the transition and are scaled to the angle of the hill.

Riley C. Sheehan (Corresponding Author) and Jinger S. Gottschall are with the Department of Kinesiology, Pennsylvania State University, University Park, PA.

All Time Past Year Past 30 Days
Abstract Views 19 19 3
Full Text Views 0 0 0
PDF Downloads 0 0 0