A Functional PCA Model for the Study of Time Series of Pressure Maps

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Principal component analysis and functional regression are combined in a model to analyze a time series of pressure maps. The model is tested measuring the pressures over a chair seat while a subject performs a combination of simple movements. A sampling rate of 3 Hz is adequate for applying the model in sitting postures. The model is able to detect patterns of movement over time, although more variables are necessary if the movements produce similar pressure distributions.

Juan C. Chicote (Corresponding Author) is with the Fundosa Accesibilidad S.A., Madrid, Spain. Juan V. Durá is with the Instituto de Biomecánica de Valencia, Universitat Politécnica de Valencia, Valencia, Spain. Juan M. Belda is with the Instituto de Biomecánica de Valencia, Universitat Politécnica de Valencia, and with the Grupo de Tecnología Sanitaria del IBV, CIBER de Bioingeniería, Biomateriales y Nanomedicina, Valencia, Spain. Rakel Poveda is with the Instituto de Biomecánica de Valencia, Universitat Politécnica de Valencia, Valencia, Spain.

Journal of Applied Biomechanics
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 18 18 3
Full Text Views 0 0 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar