Ten male recreational runners were filmed using three-dimensional cinematography while running on a treadmill at 3.8 m/s, 4.5 m/s, and 5.4 m/s. A 14-segment mathematical model was used to examine the influence of the arm swing on the three-dimensional motion of the body center of mass (CM), and on the vertical and horizontal propulsive impulses (“lift” and “drive”) on the body over the contact phase of the running cycle. The arms were found to reduce the horizontal excursions of the body CM both front to back and side to side, thus tending to make a runner's horizontal velocity more constant. The vertical range of motion of the body CM was increased by the action of the arms. The arms were found to make a small but important contribution to lift, roughly 5–10% of the total. This contribution increased with running speed. The arms were generally not found to contribute to drive, although considerable variation existed between subjects. Consistent with the CM results, the arms were found to reduce the changes in forward velocity of the runner rather than increasing them. It was concluded that there is no apparent advantage of the “classic” style of swinging the arms directly forward and backward over the style that most distance runners adopt of letting the arms cross over slightly in front. The crossover, in fact, helps reduce side-to-side excursions of the body CM mentioned above, hence promoting a more constant horizontal velocity.