Isolated Hamstrings Fatigue Alters Hip and Knee Joint Coordination during a Cutting Maneuver

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

The aim of this study was to determine the effects of hamstrings fatigue on lower extremity joint coordination variability during a sidestep cutting maneuver. Twenty female recreational athletes performed five successful trials of a sidestep cutting task preand postfatigue. Each participant completed an isolated hamstrings fatigue protocol consisting of isokinetic maximum effort knee flexion and passive extension contractions. Vector coding was used to examine hip and knee joint couplings (consisting of various planar motions) during the impact and weight acceptance phases of the sidestep cut stance phase. Paired t tests were used to analyze differences of each phase as an effect of fatigue, where alpha was set a priori at .05. The hip rotation/knee rotation coupling exhibited a significant decrease in coordination variability as a function of fatigue in both the impact (P = .015) and weight acceptance phases (P = .043). Similarly, the hip adduction-abduction/knee rotation coupling exhibited a significant decrease in coordination variability in the weight acceptance phase (P = .038). Hamstrings fatigue significantly decreased coordination variability within specific lower extremity joint couplings that included knee rotation. Future studies should be conducted to determine if this decrease in coordination variability is related to lower extremity injury mechanisms.

Michael A. Samaan, Stacie I. Ringleb, and Sebastian Bawab are with the Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA. Matthew C. Hoch is with the School of Physical Therapy and Athletic Training, Old Dominion University, Norfolk, VA. Joshua T. Weinhandl is with the Department of Human Movement Sciences, Old Dominion University, Norfolk, VA.

Address author correspondence to Joshua T. Weinhandl at jweinhan@odu.edu.