The Test-retest Reliability of Knee Joint Center Location Techniques

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The principal source of measurement error in three-dimensional analyses is the definition of the joint center about which segmental rotations occur. The hip joint has received considerable attention in three-dimensional modeling analyses yet the reliability of the different techniques for the definition of the knee joint center has yet to be established. This study investigated the reliability of five different knee joint center estimation techniques: femoral epicondyle, femoral condyle, tibial ridge, plugin-gait, and functional. Twelve male participants walked at 1.25 m·s−1 and three-dimensional kinetics/kinematics of the knee and ankle were collected. The knee joint center was defined twice using each technique (test-and-retest) and the joint kinetic/kinematic data were applied to both. Wilcoxon rank tests and intraclass correlation coefficients (ICCs) were used to compare test and retest angular parameters and kinematic waveforms. The results show significant differences in coronal and transverse planes angulation using the tibial ridge, plug-in-gait, and functional methods. The strongest test-retest ICCs were observed for the femoral epicondyle and femoral condyle configurations. The findings from the current investigation advocate that the femoral epicondyle and femoral condyle techniques for the estimation of the knee joint center are currently the most reliable techniques.

Jonathan Sinclair and Jack Hebron are with the Division of Sport Exercise and Nutritional Sciences, University of Central Lancashire, Lancashire, UK. Paul J. Taylor is with the School of Psychology, University of Central Lancashire, Lancashire, UK.

Address author correspondence to Jonathan Sinclair at JKSinclair@uclan.ac.uk.