Elastically Suspending the Screw Holes of a Locked Osteosynthesis Plate Can Dampen Impact Loads

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Impact damping by elastic fixation is a principal engineering strategy to increase the durability of load-bearing structures exposed to prolonged dynamic loading. This biomechanical study evaluated axial impact damping provided by a novel dynamic locking plate. In this design, locking screw holes are elastically suspended within a silicone envelope inside the locking plate. Axial impact damping was assessed for 3 distinct fixation constructs applied to bridge a 10-mm fracture gap of a femoral diaphysis surrogate: a standard locking plate, a dynamic locking plate, and an Ilizarov ring fixator. First, the 3 fixation constructs were characterized by determining their axial stiffness. Subsequently, constructs were subjected to a range of axial impact loads to quantify damping of force transmission. Compared with standard locked plating constructs, dynamic plating constructs were 58% less stiff (P < .01) and Ilizarov constructs were 88% less stiff (P < .01). Impact damping correlated inversely with construct stiffness. Compared with standard plating, dynamic plating constructs and Ilizarov constructs dampened the transmission of impact loads by up to 48% (P < .01) and 74% (P < .01), respectively. In conclusion, lower construct stiffness correlated with superior damping of axial impact loads. Dynamic locking plates provide significantly greater impact damping compared with standard locking plates.

Felix Capanni is with the Biomechanics Laboratory, Legacy Research Institute, Portland, OR; and the Laboratory for Biomechanics, University of Applied Sciences, Ulm, Germany. Kirk Hansen, Steven M. Madey, and Michael Bottlang are with the Biomechanics Laboratory, Legacy Research Institute, Portland, OR. Daniel C. Fitzpatrick is with the Slocum Center for Orthopedics, Eugene, OR.

Address author correspondence to Michael Bottlang at mbottlan@lhs.org.