The Contribution of Trunk Axial Kinematics to Poststrike Ball Velocity During Maximal Instep Soccer Kicking

in Journal of Applied Biomechanics
View More View Less
  • 1 Bowling Green State University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

To date, biomechanical analyses of soccer kicking have focused predominantly on lower-extremity motions, with little emphasis on the trunk and upper body. The purpose of this study was to evaluate differences in trunk axial kinematics between novice (n = 10) and skilled (n = 10) participants, as well as to establish the relationship of trunk axial motion and sagittal plane thigh rotation to poststrike ball velocity. Three-dimensional body segmental motion data were captured using high-resolution motion analysis (120 Hz) while each participant completed 5 maximal instep soccer-style kicks. The results demonstrate that skilled participants use 53% greater axial trunk range of motion compared with novice participants (P < .01), as well as 62% greater peak trunk rotation velocity (P < .01). The results also show a moderate, positive correlation of peak trunk rotation velocity with poststrike ball velocity (r = .57; P < .01), and peak hip flexion velocity with poststrike ball velocity (r = .63; P < .01). The current study highlights the potential for trunk rotation-specific training to improve maximum instep kick velocity in developing soccer athletes.

Adam M. Fullenkamp, Brian M. Campbell, C. Matthew Laurent, and Amanda Paige Lane are with the Department of Exercise Science, Bowling Green State University, Bowling Green, OH.

Address author correspondence to Adam M. Fullenkamp at fullena@bgsu.edu.