Force–Velocity Relationship of Upper Body Muscles: Traditional Versus Ballistic Bench Press

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

This study aimed to (1) evaluate the linearity of the force–velocity relationship, as well as the reliability of maximum force (F0), maximum velocity (V0), slope (a), and maximum power (P0); (2) compare these parameters between the traditional and ballistic bench press (BP); and (3) determine the correlation of F0 with the directly measured BP 1-repetition maximum (1RM). Thirty-two men randomly performed 2 sessions of traditional BP and 2 sessions of ballistic BP during 2 consecutive weeks. Both the maximum and mean values of force and velocity were recorded when loaded by 20–70% of 1RM. All force–velocity relationships were strongly linear (r > .99). While F0 and P0 were highly reliable (ICC: 0.91–0.96, CV: 3.8–5.1%), lower reliability was observed for V0 and a (ICC: 0.49–0.81, CV: 6.6–11.8%). Trivial differences between exercises were found for F0 (ES: < 0.2), however the a was higher for the traditional BP (ES: 0.68–0.94), and V0 (ES: 1.04–1.48) and P0 (ES: 0.65–0.72) for the ballistic BP. The F0 strongly correlated with BP 1RM (r: 0.915–0.938). The force–velocity relationship is useful to assess the upper body maximal capabilities to generate force, velocity, and power.

Amador García-Ramos, Paulino Padial, and Belén Feriche are with the Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. Slobodan Jaric is with the Department of Kinesiology and Applied Physiology & Biomechanics and Movement Science Graduate Program, University of Delaware, Newark, DE.

Address author correspondence to Amador García-Ramos at