Reliability of a Seven-Segment Foot Model with Medial and Lateral Midfoot and Forefoot Segments During Walking Gait

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Wisconsin-Milwaukee
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

In-vitro and invasive in-vivo studies have reported relatively independent motion in the medial and lateral forefoot segments during gait. However, most current surface-based models have not defined medial and lateral forefoot or midfoot segments. The purpose of the current study was to determine the reliability of a 7-segment foot model that includes medial and lateral midfoot and forefoot segments during walking gait. Three-dimensional positions of marker clusters located on the leg and 6 foot segments were tracked as 10 participants completed 5 walking trials. To examine the reliability of the foot model, coefficients of multiple correlation (CMC) were calculated across the trials for each participant. Three-dimensional stance time series and range of motion (ROM) during stance were also calculated for each functional articulation. CMCs for all of the functional articulations were ≥ 0.80. Overall, the rearfoot complex (leg–calcaneus segments) was the most reliable articulation and the medial midfoot complex (calcaneus–navicular segments) was the least reliable. With respect to ROM, reliability was greatest for plantarflexion/dorsiflexion and least for abduction/adduction. Further, the stance ROM and time-series patterns results between the current study and previous invasive in-vivo studies that have assessed actual bone motion were generally consistent.

Cobb and Joshi are with the Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA. Pomeroy was a graduate student at the time of this study in the master of science kinesiology program at the University of Wisconsin-Milwaukee, Milwaukee, WI, USA.

Address author correspondence to Stephen C. Cobb at cobbsc@uwm.edu.