Coefficient of Friction at the Fingertips in Type II Diabetics Compared to Healthy Adults

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Clinical observations suggest that type II diabetes patients are more susceptible to skin changes, which may be associated with reduced coefficient of friction at the fingertips. Reduced coefficient of friction may explain recent reports of fine motor dysfunction in diabetic patients. Coefficient of friction was evaluated using slip force evaluation in a cross-sectional cohort of diabetic patients and age- and sex-matched healthy controls. Covariates of tactile sensation, disease duration, glycated hemoglobin, and clinical diagnosis of peripheral neuropathy were also assessed. A significant decrease in fingertip coefficient of friction in the diabetic group was found as compared to controls. Health state covariates did not alter the strength of between-group differences in statistical analyses. This finding of between-group differences for fingertip frictional properties suggests that causative factors of reported manual motor dysfunction lie in both the distal and proximal portions of the nervous system.

Thames is with the Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA. Gorniak is with the Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, Texas Obesity Research Center, University of Houston, Houston, TX, USA.

Address author correspondence to Stacey L. Gorniak at sgorniak@uh.edu.
  • 1.

    Johansson RS, Westling G. Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res. 1984;56(3):550–564. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Burstedt MK, Flanagan JR, Johansson RS. Control of grasp stability in humans under different frictional conditions during multidigit manipulation. J Neurophysiol. 1999;82(5):2393–2405. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kinoshita H, Bäckström L, Flanagan JR, Johansson RS. Tangential torque effects on the control of grip forces when holding objects with a precision grip. J Neurophysiol. 1997;78(3):1619–1630. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gilles MA, Wing AM. Age-related changes in grip force and dynamics of hand movement. J Mot Behav. 2003;35(1):79–85. PubMed doi:

  • 5.

    Gorniak SL, Alberts JL. Effects of aging on force coordination in bimanual task performance. Exp Brain Res. 2013;229(2):273–284. PubMed doi:

  • 6.

    Park J, Pažin N, Friedman J, Zatsiorsky VM, Latash ML. Mechanical properties of the human hand digits: age-related differences. Clin Biomech. 2014;29(2):129–137. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Zackrisson T, Eriksson B, Hosseini N, Johnels B, Krogstad AL. Patients with hyperhidrosis have changed grip force, coefficient of friction and safety margin. Acta Neurol Scand. 2008;117(4):279–284. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Varadhan SKM, Zhang W, Zatsiorsky VM, Latash ML. Age effects on rotational hand action. Hum Mov Sci. 2012;31(3):502–518. PubMed doi:

  • 9.

    Gorniak SL, Zatsiorsky VM, Latash ML. Manipulation of a fragile object by elderly individuals. Exp Brain Res. 2011;212:505–516. PubMed doi:

  • 10.

    Cole KJ, Rotella DL, Harper JG. Mechanisms for age-related changes of fingertip forces during precision gripping and lifting in adults. J Neurosci. 1999;19(8):3238–3247. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cole KJ, Beck CL. The stability of precision grip force in older adults. J Mot Behav. 1994;26(2):171–177. PubMed doi:

  • 12.

    Lindberg P, Ody C, Feydy A, Maier MA. Precision in isometric precision grip force is reduced in middle-aged adults. Exp Brain Res. 2009;193(2):213–224. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kinoshita H, Francis PR. A comparison of prehension force control in young and elderly individuals. Eur J Appl Physiol. 1996;74(5):450–460. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gorniak SL, Khan A, Ochoa N, Sharma MD, Phan CL. Detecting subtle fingertip sensory and motor dysfunction in adults with type II diabetes. Exp Brain Res. 2014;232(4):1283–1291. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ochoa N, Gorniak SL. Changes in sensory function and force production in adults with type II diabetes. Muscle Nerve. 2014;50(6):984–990. PubMed doi:

  • 16.

    Ochoa N, Gogola GR, Gorniak SL. Contribution of tactile dysfunction to manual motor dysfunction in type II diabetes. Muscle Nerve. 2016;54(5):895–902. PubMed doi:

  • 17.

    Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. PubMed doi:

  • 18.

    Savescu AV, Latash ML, Zatsiorsky VM. A technique to determine friction at the finger tips. J Appl Biomech. 2008;24(1):43–50. PubMed doi:

  • 19.

    de Freitas PB, Lima KCA. Grip force control during simple manipulation tasks in non-neuropathic diabetic individuals. Clin Neurophysiol. 2013;124(9):1904–1910. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Verrillo RT. Change in vibrotactile thresholds as a function of age. Sens Processes. 1979;3(1):49–59. PubMed

  • 21.

    Gradinaru D, Borsa C, Ionescu C, Margina D. Advanced oxidative and glycoxidative protein damage markers in the elderly with type 2 diabetes. J Proteomics. 2013;92:313–322. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–589. PubMed doi:

  • 23.

    Cederlund RI, Thomsen N, Thrainsdottir S, Eriksson KF, Sundkvist G, Dahlin LB. Hand disorders, hand function, and activities of daily living in elderly men with type 2 diabetes. J Diabetes Complications. 2009;23(1):32–39. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hsu HY, Chiu HY, Lin HT, Su FC, Lu CH, Kuo LC. Impacts of elevated glycaemic haemoglobin and disease duration on the sensorimotor control of hands in diabetes patients. Diabetes Metab Res Rev. 2015;31(4):385–394. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pittenger GL, Ray M, Burcus NI, McNulty P, Basta B, Vinik AI. Intraepidermal nerve fibers are indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diabetes Care. 2004;27(8):1974–1979. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Singleton JR, Marcus RL, Jackson JE, Lessard MK, Graham TE, Smith AG. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann Clin Transl Neurol. 2014;1(10):844–849. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Petrofsky JS. The effect of type-2-diabetes-related vascular endothelial dysfunction on skin physiology and activities of daily living. J Diabetes Sci Technol. 2011;5(3):657–667. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 33 33 11
Full Text Views 0 0 0
PDF Downloads 0 0 0