The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Delaware
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

Suydam, Manal, and Buchanan are with the Delaware Rehabilitation Institute, University of Delaware, Newark, DE, USA.

Address author correspondence to Thomas S. Buchanan at buchanan@udel.edu
  • 1.

    Hortobágyi T, Westerkamp L, Beam S et al. Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin Biomech. 2005;20(1):97104. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Gray VL, Ivanova TD, Garland SJ. Control of fast squatting movements after stroke. Clin Neurophysiol. 2012;123(2):344350. PubMed doi:

  • 3.

    Chmielewski TL, Rudolph KS, Snyder-Mackler L. Development of dynamic knee stability after acute ACL injury. J Electromyogr Kinesiol. 2002;12(4):267274. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Zebis MK, Andersen LL, Bencke J et al. Identification of athletes at future risk of anterior cruciate ligament ruptures by neuromuscular screening. Am J Sports Med. 2009;37(10):19671973. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Yu B, Queen RM, Abbey AN et al. Hamstring muscle kinematics and activation during overground sprinting. J Biomech. 2008;41(15):31213126. PubMed doi:

  • 6.

    Bryant AL, Newton RU, Steele J. Successful feed-forward strategies following ACL injury and reconstruction. J Electromyogr Kinesiol. 2009;19(5):988997. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Patras K, Ziogas G, Ristanis S et al. ACL reconstructed patients with a BPTB graft present an impaired vastus lateralis neuromuscular response during high intensity running. J Sci Med Sport. 2010;13(6):573577. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Burden A, Bartlett R. Normalisation of  EMG amplitude: an evaluation and comparison of old and new methods. Med Eng Phys. 1999;21(4):247257. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Campanini I, Merlo A, Degola P et al. Effect of electrode location on EMG signal envelope in leg muscles during gait. J Electromyogr Kinesiol. 2007;17(4):515526. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jenkins NDM, Buckner SL, Cochrane KC et al. Age-related differences in rates of torque development and rise in EMG are eliminated by normalization. Exp Gerontol. 2014;57:1828. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Albertus-Kajee Y, Tucker R, Derman W et al. Alternative methods of normalising EMG during running. J Electromyogr Kinesiol. 2011;21(4):579586. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Farina D, Merletti R, Nazzaro M, Caruso I. Effect of joint angle on EMG variables in leg and thigh muscles. IEEE Eng Med Biol Mag. 2001;20(6):6271. PubMed doi:

  • 13.

    Benoit D, Lamontagne M, Cerulli G, Liti A. The clinical significance of electromyography normalisation techniques in subjects with anterior cruciate ligament injury during treadmill walking. Gait Posture. 2003;18(2):5663. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cresswell AG, Loscher WN, Thorstensson A. Influence of gastrocnemius muscle length on triceps surae torque development and electromyographic activity in man. Exp Brain Res. 1995;105:283290. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Bigland B, Lippold OCJ. The relation between force, velocity and integrated electrical activity in human muscles. J Physiol. 1954;123(1):214224. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Earp JE, Newton RU, Cormie P, Blazevich AJ. Knee angle-specific EMG normalization: the use of polynomial based EMG-angle relationships. J Electromyogr Kinesiol. 2013;23(1):238244. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rouffet DM, Hautier CA. EMG normalization to study muscle activation in cycling. J Electromyogr Kinesiol. 2008;18(5):866878. PubMed doi:

  • 18.

    Ball N, Scurr J. An assessment of the reliability and standardisation of tests used to elicit reference muscular actions for electromyographical normalisation. J Electromyogr Kinesiol. 2010;20(1):8188. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ball N, Scurr J. Electromyography normalization methods for high-velocity muscle actions: review and recommendations. J Appl Biomech. 2013;29(5):600608. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Karamanidis K, Arampatzis A, Bruggemann G. Symmetry and reproducibility of kinematic parameters during various running techniques. Med Sci Sport Exerc. 2003;35(6):10091016. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Gollhofer A, Horstmann GA, Schmidtbleicher D, Schönthall D. Reproducibility of electromyographic patterns in stretch-shortening type contractions. Eur J Appl Physiol Occup Physiol. 1990;60(1):714. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Goodwin PC, Koorts K, Mack R et al. Reliability of leg muscle electromyography in vertical jumping. Eur J Appl Physiol Occup Physiol. 1999;79(4):374378. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Fauth MKL, Petushek EJ, Feldmann CR et al. Reliability of surface electromyography during maximal voluntary isometric contractions, jump landings, and cutting. J Strength Cond Res. 2010;24(4):1131. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Farina D. Interpretation of the surface electromyogram in dynamic contractions. Exerc Sport Sci Rev. 2006;34(3):121127. PubMed doi:

  • 25.

    Ricard MD, Ugrinowitsch C, Parcell AC et al. Effects of rate of force development on EMG amplitude and frequency. Int J Sports Med. 2005;26(1):6670. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Queen RM, Gross MT, Liu HY. Repeatability of lower extremity kinetics and kinematics for standardized and self-selected running speeds. Gait Posture. 2006;23(3):282287. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Yoon SH, Challis JH. The variability of maximum vertical jumps. J Hum Mov Stud. 2005;48(2):147156. doi:

  • 28.

    Kadaba M, Ramakrishnan H, Wootten M et al. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res. 1989;7(6):849860. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Novacheck TF. The biomechanics of running. Gait Posture. 1998;7(1):7795. PubMed

  • 30.

    Fleiss JL. The Design and Analysis of Clinical Experiments. New York, NY: Wiley; 1986. doi:

  • 31.

    Knutson L, Soderberg GL, Ballantyne BT, Clarke WR. A study of various normalization procedures for within day electromyographic data. J Electromyogr Kinesiol. 1994;4(1):4759. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hodson-Tole EF, Wakeling JM. Motor unit recruitment for dynamic tasks: current understanding and future directions. J Comp Physiol B. 2009;179(1):5766. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running. J Biomech. 2010;43(14):27092716. PubMed doi:

  • 34.

    Nagano A, Komura T, Fukashiro S, Himeno R. Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping. J Electromyogr Kinesiol. 2005;15(4):367376. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 363 280 27
Full Text Views 19 16 0
PDF Downloads 12 12 0