Validation of Inertial Measurement Units for Upper Body Kinematics

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

The purpose of this study was to validate a commercially available inertial measurement unit (IMU) system against a standard lab-based motion capture system for the measurement of shoulder elevation, elbow flexion, trunk flexion/extension, and neck flexion/extension kinematics. The validation analyses were applied to 6 surgical faculty members performing a standard, simulated surgical training task that mimics minimally invasive surgery. Three-dimensional joint kinematics were simultaneously recorded by an optical motion capture system and an IMU system with 6 sensors placed on the head, chest, and bilateral upper and lower arms. The sensor-to-segment axes alignment was accomplished manually. The IMU neck and trunk IMU flexion/extension angles were accurate to within 2.9 ± 0.9 degrees and 1.6 ± 1.1°, respectively. The IMU shoulder elevation measure was accurate to within 6.8 ± 2.7° and the elbow flexion measure was accurate to within 8.2 ± 2.8°. In the Bland-Altman analyses, there were no significant systematic errors present; however, there was a significant inversely proportional error across all joints. As the gold standard measurement increased, the IMU underestimated the magnitude of the joint angle. This study reports acceptable accuracy of a commercially available IMU system; however, results should be interpreted as protocol specific.

Morrow, Lowndes, Fortune, and Hallbeck are with the Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA; and Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA. Kaufman is with Motion Analysis Laboratory, Division of Orthopedic Research, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.

Address author correspondence to Melissa M.B. Morrow at morrow.melissa@mayo.edu.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Yu DLowndes BMorrow MKaufman KBingener JHallbeck S. Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance. Surg Endosc. 2016;30(8):34803490. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gadotti ICElbaum LJung Yet al. Evaluation of eye, head and trunk coordination during target tracking tasks. Ergonomics. 2016;59(11):14201427. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rainbow MJWolff ALCrisco JJWolfe SW. Functional kinematics of the wrist. J Hand Surg Eur Vol. 2016;41(1):721. PubMed doi:

  • 4.

    Jun BJLee TQMcGarry MHQuigley RJShin SJIannotti JP. The effects of prosthetic humeral head shape on glenohumeral joint kinematics during humeral axial rotation in total shoulder arthroplasty. J Shoulder Elbow Surg. 2016;25(7):10841093. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Morrow MMHurd WJKaufman KRAn KN. Shoulder demands in manual wheelchair users across a spectrum of activities. J Electromyogr Kinesiol. 2010;20(1):6167. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zhao KDVan Straaten MGCloud BAMorrow MMAn KNLudewig PM. Scapulothoracic and glenohumeral kinematics during daily tasks in users of manual wheelchairs. Front Bioeng Biotechnol. 2015;3:183. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Lin YLKarduna A. A four-week exercise program does not change rotator cuff muscle activation and scapular kinematics in healthy subjects. J Orthop Res. 2016;34(12):20792088. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fantozzi SGiovanardi AMagalhaes FADi Michele RCortesi MGatta G. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J Sports Sci. 2016;34(11):10731080. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Pellegrini ATonino PPaladini PCutti ACeccarelli FPorcellini G. Motion analysis assessment of alterations in the scapulo-humeral rhythm after throwing in baseball pitchers. Musculoskelet Surg. 2013;97(suppl 1):913. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tranquilli CBernetti APicerno P. Ambulatory joint mobility and muscle strength assessment during rehabilitation using a single wearable inertial sensor. Med Sport. 2013;66(4):583597.

    • Search Google Scholar
    • Export Citation
  • 11.

    Keyserling WM. Workplace risk factors and occupational musculoskeletal disorders, part 2: a review of biomechanical and psychophysical research on risk factors associated with upper extremity disorders. Aihaj. 2000;61(2):231243. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Aitchison LPCui CKArnold ANesbitt-Hawes EAbbott J. The ergonomics of laparoscopic surgery: a quantitative study of the time and motion of laparoscopic surgeons in live surgical environments. Surg Endosc. 2016;30(11):50685076. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Douoguih WADolce DLLincoln AE. Early cocking phase mechanics and upper extremity surgery risk in starting professional baseball pitchers. Orthop J Sports Med. 2015;3(4):232596711558159. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Schall MCJr.Fethke NBChen HOyama SDouphrate DI. Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies. Ergonomics. 2015;59(4):591602. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    McGinnis RSCain SMTao Set al. Accuracy of femur angles estimated by IMUs during clinical procedures used to diagnose femoroacetabular impingement. IEEE Trans Biomed Eng. 2015;62(6):15031513. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Leardini ALullini GGiannini SBerti LOrtolani MCaravaggi P. Validation of the angular measurements of a new inertial-measurement-unit based rehabilitation system: comparison with state-of-the-art gait analysis. J Neuroeng Rehabil. 2014;11:136. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bouvier BDuprey SClaudon LDumas RSavescu A. Upper limb kinematics using inertial and magnetic sensors: comparison of sensor-to-segment calibrations. Sensors (Basel). 2015;15(8):1881318833. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Cutti AGFerrari AGarofalo PRaggi MCappello AFerrari A. ‘Outwalk’: a protocol for clinical gait analysis based on inertial and magnetic sensors. Med Biol Eng Comput. 2010;48(1):1725. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cutti AGGiovanardi ARocchi LDavalli ASacchetti R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput. 2008;46(2):169178. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    El-Gohary MMcNames J. Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans Biomed Eng. 2012;59(9):26352641. PubMed doi:

  • 21.

    Faber GSKingma IBruijn SMvan Dieen JH. Optimal inertial sensor location for ambulatory measurement of trunk inclination. J Biomech. 2009;42(14):24062409. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Favre JAissaoui RJolles BMde Guise JAAminian K. Functional calibration procedure for 3D knee joint angle description using inertial sensors. J Biomech. 2009;42(14):23302335. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ha THSaber-Sheikh KMoore APJones MP. Measurement of lumbar spine range of movement and coupled motion using inertial sensors - a protocol validity study. Man Ther. 2013;18(1):8791. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hyde RAKetteringham LPNeild SAJones RS. Estimation of upper-limb orientation based on accelerometer and gyroscope measurements. IEEE Trans Biomed Eng. 2008;55(2 Pt 1):746754. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Luinge HJVeltink PHBaten CT. Ambulatory measurement of arm orientation. J Biomech. 2007;40(1):7885. PubMed doi:

  • 26.

    O’Donovan KJKamnik RO’Keeffe DTLyons GM. An inertial and magnetic sensor based technique for joint angle measurement. J Biomech. 2007;40(12):26042611. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Perez RCosta UTorrent Met al. Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes. Sensors (Basel). 2010;10(12):1073310751. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Picerno PCereatti ACappozzo A. Joint kinematics estimate using wearable inertial and magnetic sensing modules. Gait Posture. 2008;28(4):588595. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Theobald PSJones MDWilliams JM. Do inertial sensors represent a viable method to reliably measure cervical spine range of motion? Man Ther. 2012;17(1):9296. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Zhou HStone THu HHarris NUse of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123133. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Brown-Clerk Bde Laveaga AELaGrange CAWirth LMLowndes BRHallbeck MS. Laparoendoscopic single-site (LESS) surgery versus conventional laparoscopic surgery: comparison of surgical port performance in a surgical simulator with novices. Surg Endosc. 2011;25(7):22102218. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Peters JHFried GMSwanstrom LLSoper NJSillin LFSchirmer BHoffman K. Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery. 2004;135(1):2127. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Derossis AMFried GMAbrahamowicz MSigman HHBarkun JSMeakins JL. Development of a model for training and evaluation of laparoscopic skills. Am J Surg. 1998;175(6):482487. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Keyser EJDerossis AMAntoniuk MSigman HHFried GMA simplified simulator for the training and evaluation of laparoscopic skills. Surg Endosc. 2000;14(2):149153. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Wu Gvan der Helm FCVeeger HEet al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part II: shoulder, elbow, wrist and hand. J Biomech. 2005;38(5):981992. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Fortune ELugade VAAmin SKaufman KR. Step detection using multi- versus single tri-axial accelerometer-based systems. Physiol Meas. 2015;36(12):25192535. PubMed doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    de Vries WHVeeger HECutti AGBaten Cvan der Helm FC. Functionally interpretable local coordinate systems for the upper extremity using inertial & magnetic measurement systems. J Biomech. 2010;43(10):19831988. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Morrow MMKaufman KRAn KN. Scapula kinematics and associated impingement risk in manual wheelchair users during propulsion and a weight relief lift. Clin Biomech. 2011;26(4):352357. PubMed doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 105 105 28
Full Text Views 26 26 3
PDF Downloads 20 20 0
Altmetric Badge
PubMed
Google Scholar
Cited By