Load Accommodation Strategies and Movement Variability in Single-Leg Landing

in Journal of Applied Biomechanics
View More View Less
  • 1 University of Florida
  • 2 University of Nevada, Las Vegas
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $88.00

1 year online subscription

USD  $118.00

Student 2 year online subscription

USD  $168.00

2 year online subscription

USD  $224.00

Our purpose was to examine changes in participant-specific single-leg landing strategies and intra-individual movement variability following alterations in mechanical task demands via external load and landing height. Nineteen healthy volunteers (15M, 4 F, age: 24.3 ± 4.9 y, mass: 78.5 ± 14.7 kg, height: 1.73 ± 0.08 m) were analyzed among 9 single-leg drop landing trials in each of 6 experimental conditions (3 load and 2 landing height) computed as percentages of participant bodyweight (BW, BW + 12.5%, BW + 25%) and height (H12.5% & H25%). Lower-extremity sagittal joint angles and moments (hip, knee, and ankle), vertical ground reaction forces (GRFz), and electrical muscle activities (gluteus maximus, biceps femoris, vastus medialis, medial gastrocnemius, and tibialis anterior muscles) were analyzed. Individual single-leg drop landing strategies were identified using landing impulse predictions and the Load Accommodation Strategies Model (James et al., 2014). Intra-individual movement variability was assessed from neuromechanical synergies extracted using single-case principal component analyses (PCA). Fewer contrasting single-leg landing strategies were identified among participants under greater mechanical task demands (p < .001) alongside lesser intra-individual movement variability (p < .001). These results reveal changes in movement control under greater mechanical task demands, which may have implications for understanding overuse injury mechanisms in landing.

Andrew D. Nordin is with J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA. Janet S. Dufek is with the Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.

Address author correspondence to Andrew D. Nordin at andrew.nordin@bme.ufl.edu.
  • 1.

    Barrett R, Noordegraaf MV, Morrison S. Gender differences in the variability of lower extremity kinematics during treadmill locomotion. J Mot Behav. 2008;40(1):6270. PubMed doi: 10.3200/JMBR.40.1.62-70

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    James CR, Dufek JS, Bates BT. Effects of injury proneness and task difficulty on joint kinetic variability. Med Sci Sports Exerc. 2000;32(11):18331844. PubMed doi: 10.1097/00005768-200011000-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Stergiou N, Decker LM. Human movement variability, nonlinear dynamics, and pathology: is there a connection? Hum Mov Sci. 2011;30(5):869888. PubMed doi: 10.1016/j.humov.2011.06.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Stergiou N, Harbourne R, Cavanaugh J. Optimal movement variability: a new theoretical perspective for neurologic physical therapy. J Neurol Phys Ther. 2006;30(3):120129. PubMed doi: 10.1097/01.NPT.0000281949.48193.d9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Daffertshofer A, Lamoth CJC, Meijer OG, Beek PJ. PCA in studying coordination and variability: a tutorial. Clin Biomech (Bristol, Avon). 2004;19(4):415428. PubMed doi: 10.1016/j.clinbiomech.2004.01.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Deluzio KJ, Harrison AJ, Coffey N, Caldwell GE. Analysis of biomechanical waveform data. In G Roberston, G Caldwell, J Hamill, G Kamen, S. Whittlesey (Eds.). Research Methods in Biomechanics. 2nd ed. Champaign, IL: Human Kinetics; 2014.

    • Search Google Scholar
    • Export Citation
  • 7.

    Li Z-M. Functional degrees of freedom. Motor Control. 2006;10(4):301310. PubMed doi: 10.1123/mcj.10.4.301

  • 8.

    Diedrichsen J, Shadmehr R, Ivry RB. The coordination of movement: optimal feedback control and beyond. Trends Cogn Sci. 2010;14(1):3139. PubMed doi: 10.1016/j.tics.2009.11.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Latash ML. Stages in learning motor synergies: a view based on the equilibrium-point hypothesis. Hum Mov Sci. 2010;29(5):642654. PubMed doi: 10.1016/j.humov.2009.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lohse KR, Jones M, Healy AF, Sherwood DE. The role of attention in motor control. J Exp Psychol Gen. 2014;143(2):930948. PubMed doi: 10.1037/a0032817

  • 11.

    Scholz PJ, Schöner G. The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research. 1999;126(3):289306. PubMed doi: 10.1007/s002210050738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Brandon SCE, Graham RB, Almosnino S, Sadler EM, Stevenson JM, Deluzio KJ. Interpreting principal components in biomechanics: representative extremes and single component reconstruction. J Electromyogr Kinesiol. 2013;23(6):13041310. PubMed doi: 10.1016/j.jelekin.2013.09.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Federolf PA, Boyer KA, Andriacchi TP. Application of principal component analysis in clinical gait research: identification of systematic differences between healthy and medial knee-osteoarthritic gait. J Biomech. 46(13):21732178. 10.1016/j.jbiomech.2013.06.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kipp K, Palmieri-Smith RM. Principal component based analysis of biomechanical inter-trial variability in individuals with chronic ankle instability. Clin Biomech. 2012;27(7):706710. PubMed doi: 10.1016/j.clinbiomech.2012.02.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Richter C, O’Connor NE, Marshall B, Moran K. Comparison of discrete-point vs. dimensionality-reduction techniques for describing performance-related aspects of maximal vertical jumping. J Biomech. 2014;47(12):30123017. PubMed doi: 10.1016/j.jbiomech.2014.07.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nordin AD, Dufek JS. Neuromechanical synergies in single-leg landing reveal changes in movement control. Hum Mov Sci. 2016;49:6678. PubMed doi: 10.1016/j.humov.2016.06.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bates BT, James CR, Dufek JS. Single-subject analysis. In: Stergiou N, ed. Innovative Analyses of Human Movement. Champaign, IL: Human Kinetics; 2004:528.

    • Search Google Scholar
    • Export Citation
  • 18.

    Bates BT. Single-subject methodology: an alternative approach. Med Sci Sports Exerc. 1996;28(5):631638. PubMed

  • 19.

    James CR, Bates BT. Experimental and statistical design issues in human movement research. Meas Phys Educ Exerc Sci. 1997;1(1):5569. 10.1207/s15327841mpee0101_4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Newell KM. Constraints on the development of coordination. In: Motor Development in Children: Aspects of Coordination and Control. Marinus Nijhoff Publishers; 1986:342360.

    • Search Google Scholar
    • Export Citation
  • 21.

    James CR, Atkins LT, Dufek JS, Bates BT. An exploration of load accommodation strategies during walking with extremity-carried weights. Hum Mov Sci. 2014;35:1729. PubMed doi: 10.1016/j.humov.2014.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    James CR, Bates BT, Dufek JS. Classification and comparison of biomechanical response strategies for accommodating landing impact. J Appl Biomech. 2003;19(2):106118. PubMed doi: 10.1123/jab.19.2.106

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Nordin AD, Dufek JS, James CR, Bates BT. Classifying performer strategies in drop landing activities. J Sports Sci. 2017:3535(18)18581863. PubMed doi: 10.1080/02640414.2016.1240876

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Dufek JS, Bates BT, Stergiou N, James CR. Interactive effects between group and single-subject response patterns. Hum Mov Sci. 1995;14(3):301323. 10.1016/0167-9457(95)00013-I

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Scholes CJ, McDonald MD, Parker AW. Single-subject analysis reveals variation in knee mechanics during step landing. J Biomech. 2012;45(12):20742078. PubMed doi: 10.1016/j.jbiomech.2012.05.046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Stergiou N, Scott MM. Baseline measures are altered in biomechanical studies. J Biomech. 2005;38(1):175178. 10.1016/j.jbiomech.2004.03.007

  • 27.

    Nordin AD, Dufek JS. Single-leg landing neuromechanical data following load and land height manipulations. Data Brief. 2016;8:10241030. PubMed doi: 10.1016/j.dib.2016.07.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    De Luca CJ. The use of surface electromyography in biomechanics. J Appl Biomech. 1997;13:135163. 10.1123/jab.13.2.135

  • 29.

    James CR, Herman JA, Dufek JS, Bates BT. Number of trials necessary to achieve performance stability of selected ground reaction force variables during landing. J Sports Sci Med. 2007;6(1):126134. PubMed.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kipp K, Pfeiffer R, Sabick M, et al. Muscle synergies during a single-leg drop-landing in boys and girls. J Appl Biomech. 2014;30(2):262268. PubMed doi: 10.1123/jab.2012-0193

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ball N, Scurr J. Electromyography normalization methods for high velocity muscle actions: review and recommendations. J Appl Biomech. 2013;29(5):600608. PubMed doi: 10.1123/jab.29.5.600

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Field A. Discovering Statistics Using SPSS. 3rd ed. Thousand Oaks, CA: SAGE Publications Ltd.; 2009.

  • 33.

    Caster BL, Bates BT. The assessment of mechanical and neuromuscular response strategies during landing. Med Sci Sports Exerc. 1995;27(5):736744. PubMed doi: 10.1249/00005768-199505000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Niu W, Feng T, Jiang C, Zhang M. Peak vertical ground reaction force during two-leg landing: a systematic review and mathematical modeling. BioMed Res Int. 2014;2014:126860. PMC4160626 10.1155/2014/126860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Dufek JS, Bates BT. The evaluation and prediction of impact forces during landings. Med Sci Sports Exerc. 1990;22(3):370377. PubMed doi: 10.1249/00005768-199006000-00014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Dufek JS, Zhang S. Landing models for volleyball players: a longitudinal evaluation. J Sports Med Phys Fitness. 1996;36(1):3542. PubMed

  • 37.

    Bernstein N. The Coordination and Regulation of Movements. New York, NY: Pergamon Press Inc.; 1967.

  • 38.

    Chvatal SA, Ting LH. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking. J Neurosci. 2012;32(35):1223712250. PubMed doi: 10.1523/JNEUROSCI.6344-11.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Todorov E. Optimality principles in sensorimotor control. Nat Neurosci. 2004;7(9):907915. PubMed doi: 10.1038/nn1309

  • 40.

    Turvey MT. Coordination. Am Psychol. 1990;45(8):938953. PubMed doi: 10.1037/0003-066X.45.8.938

  • 41.

    Scott SH. The computational and neural basis of voluntary motor control and planning. Trends Cogn Sci. 2012;16(11):541549. PubMed doi: 10.1016/j.tics.2012.09.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Fang Y, Siemionow V, Sahgal V, Xiong F, Yue GH. Distinct brain activation patterns for human maximal voluntary eccentric and concentric muscle actions. Brain Res. 2004;1023(2):200212. PubMed doi: 10.1016/j.brainres.2004.07.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Guilhem G, Cornu C, Guével A. Neuromuscular and muscle-tendon system adaptations to isotonic and isokinetic eccentric exercise. Ann Phys Rehabil Med. 2010;53(5):319341. PubMed doi: 10.1016/j.rehab.2010.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Komi PV, Linnamo V, Silventoinen P, Sillanpää M. Force and EMG power spectrum during eccentric and concentric actions. Med Sci Sports Exerc. 2000;32(10):17571762. PubMed doi: 10.1097/00005768-200010000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Linnamo V, Moritani T, Nicol C, Komi P. Motor unit activation patterns during isometric, concentric and eccentric actions at different force levels. J Electromyogr Kinesiol. 2003;13(1):93101. PubMed doi: 10.1016/S1050-6411(02)00063-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Wulf G, McNevin N, Shea CH. The automaticity of complex motor skill learning as a function of attentional focus. Q J Exp Psychol A. 2001;54(4):11431154. PubMed doi: 10.1080/713756012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    James CR. Considerations of movement variability in biomechanics research. In: Stergiou N, ed. Innovative Analyses of Human Movement. Champaign, IL: Human Kinetics; 2004:2962.

    • Search Google Scholar
    • Export Citation
  • 48.

    Trudeau MB, Von Tscharner V, Vienneau J, Hoerzer S, Nigg BM. Assessing footwear effects from principal features of plantar loading during running. Med Sci Sports Exerc. 2015;47(9):19881996. PubMed doi: 10.1249/MSS.0000000000000615

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 268 192 25
Full Text Views 39 14 2
PDF Downloads 10 3 0