Physiological and Biomechanical Responses to Prolonged Heavy Load Carriage During Level Treadmill Walking in Females

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Heavy load carriage has been identified as a main contributing factor to the high incidence of overuse injuries in soldiers. Peak vertical ground reaction force (VGRFMAX) and maximal vertical loading rates (VLRMAX) may increase during heavy prolonged load carriage with the development of muscular fatigue and reduced shock attenuation capabilities. The objectives of the current study were (1) to examine physiological and biomechanical changes that occur during a prolonged heavy load carriage task, and (2) to examine if this task induces neuromuscular fatigue and changes in muscle architecture. Eight inexperienced female participants walked on an instrumented treadmill carrying operational loads for 60 minutes at 5.4 km·h–1. Oxygen consumption (V˙O2), heart rate, rating of perceived exertion (RPE), trunk lean angle, and ground reaction forces were recorded continuously during task. Maximal force and in-vivo muscle architecture were assessed pre- and posttask. Significant increases were observed for VGRFMAX, VLRMAX, trunk lean angle, V˙O2, heart rate, and RPE during the task. Increased vastus lateralis fascicle length and decreased maximal force production were also observed posttask. Prolonged heavy load carriage, in an inexperienced population carrying operational loads, results in progressive increases in ground reaction force parameters that have been associated with overuse injury.

Lidstone, Stewart, Gurchiek, Needle, van Werkhoven, and McBride are with the Department of Health and Exercise Science, Appalachian State University, Boone, NC, USA.

Address author correspondence to Daniel E. Lidstone at lidstoned@appstate.edu.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Roy TCKnapik JJRitland BMMurphy NSharp MA. Risk factors for musculoskeletal injuries for soldiers deployed to Afghanistan. Aviat Space Environ Med. 2012;83(11):10601066. PubMed doi: 10.3357/ASEM.3341.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Orr RMJohnston VCoyle JPope R. Reported load carriage injuries of the Australian army soldier. J Occup Rehabil. 2015;25(2):316322. PubMed doi: 10.1007/s10926-014-9540-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Birrell SAHooper RHHaslam RA. The effect of military load carriage on ground reaction forces. Gait Posture. 2007;26(4):611614. PubMed doi: 10.1016/j.gaitpost.2006.12.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wang HFrame JOzimek ELeib DDugan EL. Influence of fatigue and load carriage on mechanical loading during walking. Mil Med. 2012;177(2):152156. PubMed doi: 10.7205/MILMED-D-11-00210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Zadpoor AANikooyan AA: The relationship between lower-extremity stress fractures and the ground reaction force: a systematic review. Clin Biomech. 2011;26(1):2328. PubMed doi: 10.1016/j.clinbiomech.2010.08.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Birrell SAHaslam RA. The effect of load distribution within military load carriage systems on the kinetics of human gait. Appl Ergon. 2010;41(4):585590. PubMed doi: 10.1016/j.apergo.2009.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Attwells RLBirrell SAHooper RHMansfield NJ. Influence of carrying heavy loads on soldiers posture, movements and gait. Ergonomics. 2006;49(14):15271537. PubMed doi: 10.1080/00140130600757237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Majumdar DPal MSMajumdar D. Effects of military load carriage on kinematics of gait. Ergonomics. 2010;53(6):782791. PubMed doi: 10.1080/00140131003672015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Simpson KMMunro BJSteele JR. Effects of prolonged load carriage on ground reaction forces, lower limb kinematics and spatio-temporal parameters in female recreational hikers. Ergonomics. 2012;55(3):316326. PubMed doi: 10.1080/00140139.2011.642004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Grenier JGPeyrot NCastells JOullion RMessonnier LMorin JB. Energy cost and mechanical work of walking during load carriage in soldiers. Med Sci Sports Exerc. 2012;44(6):11311140. PubMed doi: 10.1249/MSS.0b013e3182456057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Blacker SDFallowfield JLBilzon JLWillems ME. Physiological responses to load carriage during level and downhill treadmill walking. Medicina Sportiva. 2009;13(2):116124. 10.2478/v10036-009-0018-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Grenier JGMillet GYPeyrot NSamozino POullion RMessonnier LMorin JB. Effects of extreme-duration heavy load carriage on neuromuscular function and locomotion: a military-based study. PloS One. 2012;7(8):43586. PubMed doi: 10.1371/journal.pone.0043586

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fallowfield JLBlacker SDWillems MEDavey TLayden J. Neuromuscular and cardiovascular responses of Royal Marine recruits to load carriage in the field. Appl Ergon. 2012;43(6):11311137. PubMed doi: 10.1016/j.apergo.2012.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Blacker SDFallowfield JLBilzon JLWillems ME. Neuromuscular impairment following backpack load carriage. J Hum Kinet. 2013;37(1):9198. PubMed doi: 10.2478/hukin-2013-0029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Simpson KMMunro BJSteele JR. Backpack load affects lower limb muscle activity patterns of female hikers during prolonged load carriage. J Electromyogr Kinesiol. 2011;21(5):782788. PubMed doi: 10.1016/j.jelekin.2011.05.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ishikawa MDousset EAvela Jet al. Changes in the soleus muscle architecture after exhausting stretch-shortening cycle exercise in humans. Eur J Appl Physiol. 2006;97(3):298306. PubMed doi: 10.1007/s00421-006-0180-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Mitsukawa NSugisaki NKanehisa HFukunaga TKawakami Y. Fatigue-related changes in fascicle–tendon geometry over repeated contractions: difference between synergist muscles. Muscle Nerve. 2009;40(3):395401. PubMed doi: 10.1002/mus.21303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Edgerton VRSmith JLSimpson DR. Muscle fibre type populations of human leg muscles. Histochem J. 1975;7(3):259266. PubMed doi: 10.1007/BF01003594

  • 19.

    Nindl BCLeone CDTharion WJet al. Physical performance responses during 72 h of military operational stress. Med Sci Sports Exerc. 2002;34(11):18141822. PubMed doi: 10.1097/00005768-200211000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kelly KRJameson JT. Preparing for combat readiness for the fight: physical performance profile of female US marines. J Strength Cond Res. 2016;30(3):595604. PubMed doi: 10.1519/JSC.0000000000001269

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Astorino TARietschel JCTam PAet al. Reinvestigation of optimal duration of VO2 max testing. J Exerc Physiol Online. 2004;7:OR0OR0.

    • Search Google Scholar
    • Export Citation
  • 22.

    Howley EBassett DWelsch H. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27:12921301. PubMed doi: 10.1249/00005768-199509000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Dean CE. The Modern Warrior’s Combat Load. Dismounted Operations in Afghanistan April–May 2003. Fort Leavenworth, KS: Army Center for Lessons Learned; 2004.

    • Search Google Scholar
    • Export Citation
  • 24.

    Kang GEGross MM. Concurrent validation of magnetic and inertial measurement units in estimating upper body posture during Gait. Measurement. 2016;82(2016):240245. 10.1016/j.measurement.2016.01.007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Jurman DJankovec MKamnik RTopič M. Calibration and data fusion solution for the miniature attitude and heading reference system. Sens Actuators A Phys. 2007;138(2):411420. 10.1016/j.sna.2007.05.008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Wundersitz DWTGastin PBRichter CRobertson SJNetto KJ. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running. Eur J Sport Sci. 2015;15(5):382390. PubMed doi: 10.1080/17461391.2014.955131

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bergamini EGuillon PCamomilla VPillet HSkalli WCappozzo A. Trunk inclination estimate during the sprint start using an inertial measurement unit: a validation study. J Appl Biomech. 2013;29:622627. PubMed doi: 10.1123/jab.29.5.622

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377381. PubMed doi: 10.1249/00005768-198205000-00012

  • 29.

    Bénard MRBecher JGHarlaar JHuijing PAJaspers RT. Anatomical information is needed in ultrasound imaging of muscle to avoid potentially substantial errors in measurement of muscle geometry. Muscle Nerve. 2009;39(5):652665. PubMed doi: 10.1002/mus.21287

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kurokawa SFukunaga TFukashiro S. Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol. 2001;90(4):13491358. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kumagai KAbe TBrechue WFRyushi TTakano SMizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88(3):811816.PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Zifchock RADavis IHamill J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J Biomech. 2006;39(15):27922797. PubMed doi: 10.1016/j.jbiomech.2005.10.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hreljac A. Impact and overuse injuries in runners. Med Sci Sports Exerc. 2004;36(5):845849. PubMed doi: 10.1249/01.MSS.0000126803.66636.DD

  • 34.

    Milner CEFerber RPollard CDHamill JDavis IS. Biomechanical factors associated with tibial stress fracture in female runners. Med Sci Sports Exerc. 2006;38(2):323328. PubMed doi: 10.1249/01.mss.0000183477.75808.92

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Knapik JJReynolds K. Load carriage-related injury mechanisms, risk factors, and prevention. In: Gefen AEpstein Y eds. Mechanobiology and Mechanophysiology of Military-Related Injuries. Berlin, Germany: Springer Publishing; 2015.

    • Search Google Scholar
    • Export Citation
  • 36.

    Simons CBradshaw EJ. Do accelerometers mounted on the back provide a good estimate of impact loads in jumping and landing tasks? Sports Biomech. 2016;15(1):7688. PubMed doi: 10.1080/14763141.2015.1123765

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Singh TKoh M. Effects of backpack load position on spatiotemporal parameters and trunk forward lean. Gait Posture. 2009;29(1):4953. PubMed doi: 10.1016/j.gaitpost.2008.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Harman EHan KFrykman PPandorf C. The Effects of Backpack Weight on the Biomechanics of Load Carriage. Report No. 00–14. Natick, MA: U.S. Army Research Institute of Environmental Medicine; 2000.

    • Search Google Scholar
    • Export Citation
  • 39.

    Simpson KMMunro BJSteele JR. Effect of load mass on posture, heart rate and subjective responses of recreational female hikers to prolonged load carriage. Appl Ergon. 2011;42(3):403410. PubMed doi: 10.1016/j.apergo.2010.08.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Qu XYeo JC. Effects of load carriage and fatigue on gait characteristics. J Biomech. 2011;44(7):12591263. PubMed doi: 10.1016/j.jbiomech.2011.02.016

  • 41.

    Granata KPSlota GPWilson SE. Influence of fatigue in neuromuscular control of spinal stability. Hum Factors. 2004;46(1):8191. 10.1518/hfes.46.1.81.30391

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Mullins AKAnnett LEDrain JRKemp JGClark RAWhyte DG. Lower limb kinematics and physiological responses to prolonged load carriage in untrained individuals. Ergonomics. 2015;58(5):770780. PubMed doi: 10.1080/00140139.2014.984775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Tay CSLee JKTeo YSFoo PQTan PMKong PW. Using gait parameters to detect fatigue and responses to ice slurry during prolonged load carriage. Gait Posture. 2016;43:1723. PubMed doi: 10.1016/j.gaitpost.2015.10.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Phillips DBStickland MKPetersen SR. Ventilatory responses to prolonged exercise with heavy load carriage. Eur J Appl Physiol. 2016;116(1):1927. PubMed doi: 10.1007/s00421-015-3240-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Shekerdemian LBohn D. Cardiovascular effects of mechanical ventilation. Arch Dis Child. 1999;80(5):475480. PubMed doi: 10.1136/adc.80.5.475

  • 46.

    Liu BS. Backpack load positioning and walking surface slope effects on physiological responses in infantry soldiers. Int J Ind Ergonom. 2007;37(9):754760. 10.1016/j.ergon.2007.06.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Sagiv MBen-Gal SBen-Sira D. Effects of gradient and load carried on human haemodynamic responses during treadmill walking. Eur J Appl Physiol. 2000;83(1):4750. PubMed doi: 10.1007/s004210000250

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 85 85 16
Full Text Views 10 10 5
PDF Downloads 7 7 5
Altmetric Badge
PubMed
Google Scholar