Split-Belt Treadmill Walking Alters Lower Extremity Frontal Plane Mechanics

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Interventions that manipulate gait speed may also affect the control of frontal plane mechanics. Expanding the current knowledge of frontal plane adaptations during split-belt treadmill walking could advance our understanding of the influence of asymmetries in gait speed on frontal plane mechanics and provide insight into the breadth of adaptations required by split-belt walking (SBW). Thirteen young, healthy participants, free from lower extremity injury walked on a split-belt treadmill with belts moving simultaneously at different speeds. We examined frontal plane mechanics of the ankle, knee, and hip joints during SBW, as well as medio-lateral ground reaction forces (ML-GRF). We did not observe alterations in the frontal mechanics produced during early or late adaptation of SBW when compared to conditions where the belts moved together. We did observe that ML-GRF and hip moment impulse of the fast limb increased over time with adaptation to SBW. These results suggest this modality may provide a unique therapy for individuals with gait pathologies, impairments, or compensation(s).

Roper, Terza, and Hass are with the University of Florida, Gainesville, FL, USA. Roemmich is with the University of Florida, Gainesville, FL, USA; and Johns Hopkins University School of Medicine, Baltimore, MD, USA. Tillman is with the University of Florida, Gainesville, FL, USA; and Kennesaw State University, Kennesaw, GA, USA.

Address author correspondence to Jaimie A. Roper at jroper@auburn.edu.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Bauby CEKuo AD. Active control of lateral balance in human walking. J Biomech. 2000;33:14331440. PubMed doi: 10.1016/S0021-9290(00)00101-9

  • 2.

    Dean JCAlexander NBKuo AD. The effect of lateral stabilization on walking in young and old adults. IEEE Trans Biomed Eng. 2007;54(11):19191926. PubMed doi: 10.1109/TBME.2007.901031

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Eng JJWinter D. Estimations of the horizontal displacement of the total body centre of mass: considerations during standing activities. Gait Posture. 1993;1:141144. 10.1016/0966-6362(93)90055-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    MacKinnon CDWinter DA. Control of whole body balance in the frontal plane during human walking. J Biomech. 1993;26(6):633644. PubMed doi: 10.1016/0021-9290(93)90027-C

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    John CTSeth ASchwartz MHDelp SL. Contributions of muscles to mediolateral ground reaction force over a range of walking speeds. J Biomech. 2012;45:24382443. PubMed doi: 10.1016/j.jbiomech.2012.06.037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Robbins SMMaly MR. The effect of gait speed on the knee adduction moment depends on waveform summary measures. Gait Posture. 2009;30:543546. PubMed doi: 10.1016/j.gaitpost.2009.08.236

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Orendurff MSSegal ADKlute GKBerge JSRohr ESKadel NJ. The effect of walking speed on center of mass displacement. J Rehabil Res Dev. 2004;41(6A):829834. 10.1682/JRRD.2003.10.0150

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Reisman DSWityk RSilver KBastian AJ. Split-belt treadmill adaptation transfers to overground walking in persons poststroke. Neurorehabil Neural Repair. 2009;23:735744. PubMed doi: 10.1177/1545968309332880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Reisman DSMcLean HKeller JDanks KABastian AJ. Repeated split-belt treadmill training improves poststroke step length asymmetry. Neurorehabil Neural Repair. 2013;27:460468. PubMed doi: 10.1177/1545968312474118

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Roemmich RTStegemöller ELHass CJ. Lower extremity sagittal joint moment production during split-belt treadmill walking. J Biomech. 2012;45:28172821. PubMed doi: 10.1016/j.jbiomech.2012.08.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hinkel-Lipsker JWHahn ME. Novel kinetic strategies adopted in asymmetric split-belt treadmill walking. J Mot Behav. 2016;48(3):209217. 10.1080/00222895.2015.1073137

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sawers AKelly VEKartin DHahn ME. Gradual training reduces the challenge to lateral balance control during practice and subsequent performance of a novel locomotor task. Gait Posture. 2013;38(4):907911. PubMed doi: 10.1016/j.gaitpost.2013.04.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kadaba MPRamakrishnan HKWootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res. 1990;8(3):383392. PubMed doi: 10.1002/jor.1100080310

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Reisman DSBlock HJBastian AJ. Interlimb coordination during locomotion: what can be adapted and stored? J Neurophysiol. 2005;94:24032415. PubMed doi: 10.1152/jn.00089.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Charlton IWTate PSmyth PRoren L. Repeatability of an optimised lower body model. Gait Posture. 2004;20(2):213221. PubMed doi: 10.1016/j.gaitpost.2003.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Turns LJNeptune RRKautz SA. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch Phys Med Rehabil. 2007;88(9):11271135. PubMed doi: 10.1016/j.apmr.2007.05.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Benjamini YHochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological). 1995;57:289300. 10.2307/2346101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Cappellini GIvanenko YPPoppele RELacquaniti F. Motor patterns in human walking and running. J Neurophysiol. 2006;95:34263437. PubMed doi: 10.1152/jn.00081.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Prokop TBerger WZijlstra WDietz V. Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input. Exp Brain Res. 1995;106(3):449456. PubMed doi: 10.1007/BF00231067

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Dietz VZijlstra WDuysens J. Human neuronal interlimb coordination during split-belt locomotion. Exp Brain Res. 1994;101:513520. PubMed doi: 10.1007/BF00227344

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 92 92 43
Full Text Views 14 14 1
PDF Downloads 10 10 0
Altmetric Badge
PubMed
Google Scholar
Cited By