Influence of a Full-Body Compression Suit on Trunk Positioning and Knee Joint Mechanics During Lateral Movements

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Trunk positioning has been shown to be associated with knee joint loading during athletic tasks, especially changes of direction. The purpose of the present study was to test whether a full-body compression suit (FBCS) would improve trunk positioning and knee joint control during lateral movements. Twelve female athletes performed lateral reactive jumps (LRJ) and unanticipated cuttings with and without the customized FBCS, while 3D kinematics and kinetics were measured. FBCS did not influence trunk positioning during LRJ and led to increased trunk lateral lean during cuttings (P < .001). However, while wearing FBCS, knee joint abduction and internal rotation angles were reduced during LRJ (P < .001 and P = .013, respectively), whereas knee joint moments were comparable during cuttings. FBCS cannot support the trunk segment during unanticipated dynamic movements. But, increased trunk lateral lean during cutting maneuvers was not high enough to elicit increased knee joint moments. On the contrary, knee joint abduction and internal rotation were reduced during LRJ, speaking for a better knee joint alignment with FBCS. Athletes seeking to improve trunk positioning may not benefit from a FBCS.

Mornieux is with the Faculty of Sport Sciences, EA3450–DevAH, University of Lorraine, Nancy, France. Weltin and Gollhofer are with the Institute of Sport and Sport Science, University of Freiburg, Freiburg, Germany. Pauls is with the Institute of Sport Science, Technische Universität Kaiserslautern, Kaiserslautern, Germany. Rott is with adidas AG, Herzogenaurach, Germany.

Address author correspondence to Guillaume Mornieux to guillaume.mornieux@univ-lorraine.fr.
  • 1.

    Olsen O-E, Myklebust G, Engebretsen L, Bahr R. Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med. 2004;32(4):1002–1012. PubMed doi: 10.1177/0363546503261724

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Alentorn-Geli E, Myer GD, Silvers HJ, et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc. 2009;17(7):705–729. PubMed doi: 10.1007/s00167-009-0813-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hewett TE, Myer GD. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc Sport Sci Rev. 2011;39(4):161–166. PubMed doi: 10.1097/JES.0b013e3182297439

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hughes G. A review of recent perspectives on biomechanical risk factors associated with anterior cruciate ligament injury. Res Sports Med. 2014;22(2):193–212. PubMed doi: 10.1080/15438627.2014.881821

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hewett TE, Torg JS, Boden BP. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: lateral trunk and knee abduction motion are combined components of the injury mechanism. Br J Sports Med. 2009;43(6):417–422. PubMed doi: 10.1136/bjsm.2009.059162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Jamison ST, Pan X, Chaudhari AMW. Knee moments during run-to-cut maneuvers are associated with lateral trunk positioning. J Biomech. 2012;45(11):1881–1885. PubMed doi: 10.1016/j.jbiomech.2012.05.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Weltin E, Mornieux G, Gollhofer A. Influence of gender on trunk and lower limb biomechanics during lateral movements. Res Sports Med. 2015;23(3):265–277. PubMed doi: 10.1080/15438627.2015.1040915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Dempsey AR, Lloyd DG, Elliott BC, Steele JR, Munro BJ, Russo KA. The effect of technique change on knee loads during sidestep cutting. Med Sci Sports Exerc. 2007;39(10):1765–1773. PubMed doi: 10.1249/mss.0b013e31812f56d1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Frank B, Bell DR, Norcross MF, Blackburn JT, Goerger BM, Padua DA. Trunk and hip biomechanics influence anterior cruciate loading mechanisms in physically active participants. Am J Sports Med. 2013;41(11):2676–2683. PubMed doi: 10.1177/0363546513496625

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Agel J, Arendt EA, Bershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med. 2005;33(4):524–531. PubMed doi: 10.1177/0363546504269937

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Renstrom P, Ljungqvist A, Arendt E, et al. Non-contact ACL injuries in female athletes: an international olympic committee current concepts statement. Br J Sports Med. 2008;42(6):394–412. PubMed doi: 10.1136/bjsm.2008.048934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    MacRae BA, Cotter JD, Laing RM. Compression garments and exercise. Garment considerations, physiology and performance. Sports Med. 2011;41(10):815–843. PubMed doi: 10.2165/11591420-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bernhardt T, Anderson GS. Influence of moderate prophylactic compression on sport performance. J Strength Cond Res. 2005;19(2):292–297. PubMed doi: 10.1519/1533-4287(2005)19[292:IOMPCO]2.0.CO;2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Doan BK, Kwon Y-H, Newton RU, et al. Evaluation of a lower-body compression garment. J Sports Sci. 2003;21(8):601–610. PubMed doi: 10.1080/0264041031000101971

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chaudhari AMW, Jamison ST, McNally MP, Pan X, Schmitt LC. Hip adductor activations during run-to-cut manoeuvres in compression shorts: implications for return to sport after groin injury. J Sports Sci. 2014;32(14):1333–1340. PubMed doi: 10.1080/02640414.2014.889849

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Duffield R, Portus M. Comparison of three types of full-body compression garments on throwing and repeat-sprint performance in cricket players. Br J Sports Med. 2007;41(7):409–414. PubMed doi: 10.1136/bjsm.2006.033753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sperlich B, Haegele M, Achtzehn S, Linville J, Holmberg H-C, Mester J. Different types of compression clothing do not increase sub-maximal and maximal endurance performance in well-trained athletes. J Sports Sci. 2010;28(6):609–614. PubMed doi: 10.1080/02640410903582768

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sear JA, Hoare TK, Scanlan AT, Abt GA, Dascombe BJ. The effects of whole-body compression garments on prolonged high-intensity intermittent exercise. J Strength Cond Res. 2010;24(7):1901–1910. PubMed doi: 10.1519/JSC.0b013e3181db251b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mornieux G, Gehring D, Fürst P, Gollhofer A. Anticipatory postural adjustments during cutting manoeuvres in football and their consequences for knee injury risk. J Sports Sci. 2014;32(13):1255–1262. PubMed doi: 10.1080/02640414.2013.876508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Troynikov O, Ashayeri E, Burton M, Subic M, Alam F, Marteau S. Factors influencing the effectiveness of compression garments used in sports. Procedia Eng. 2010;2(2):2823–2829. 10.1016/j.proeng.2010.04.073

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Yoshida A, Kahanov L. The effect of kinesio taping on lower trunk range of motions. Res Sports Med. 2007;15(2):103–112. PubMed doi: 10.1080/15438620701405206

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mornieux G, Gehring D, Tokuno C, Gollhofer A, Taube W. Changes in leg kinematics in response to unpredictability in lateral jump execution. Eur J Sport Sci. 2014;14(7):678–685. PubMed doi: 10.1080/17461391.2014.894577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Moir G, Shastri P, Connaboy C. Intersession reliability of vertical jump height in women and men. J Strength Cond Res. 2008;22(6):1779–1784. PubMed doi: 10.1519/JSC.0b013e318185f0df

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Stewart PF, Turner AN, Miller SC. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand J Med Sci Sport. 2014;24(3):500–506. PubMed doi: 10.1111/sms.12019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Hewett TE, Myer GD, Ford KR, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am J Sports Med. 2005;33(4):492–501. PubMed doi: 10.1177/0363546504269591

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cohen J. Statistical Power Analysis for the Behavorial Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers; 1988.

  • 27.

    Weltin E, Gollhofer A, Mornieux G. Effect of gender on trunk and pelvis control during lateral movements with perturbed landing. Eur J Sport Sci. 2016;16(2):182–189. PubMed doi: 10.1080/17461391.2014.992478

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Beaulieu ML, Lamontagne M, Xu L. Lower limb muscle activity and kinematics of an unanticipated cutting manoeuvre: a gender comparison. Knee Surg Sports Traumatol Arthrosc. 2009;17(8):968–976. PubMed doi: 10.1007/s00167-009-0821-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM. Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc. 2004;36(6):926–934. PubMed doi: 10.1249/01.MSS.0000128145.75199.C3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ali A, Creasy RH, Edge JA. Physiological effects of wearing graduated compression stockings during running. Eur J Appl Physiol. 2010;109(6):1017–1025. PubMed doi: 10.1007/s00421-010-1447-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Ireland ML. Anterior cruciate ligament injury in female athletes: epidemiology. J Athl Train. 1999;34(2):150–154. PubMed

  • 32.

    Davies V, Thompson KG, Cooper S. The effects of compression garments on recovery. J Strength Cond Res. 2009;23(6):1786–1794. PubMed doi: 10.1519/JSC.0b013e3181b42589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Kraemer WJ, Bush JA, Bauer JA, et al. Influence of compression garments on vertical jump performance in NCAA Division I volleyball players. J Strength Cond Res. 1996;10(3):180–183. 10.1519/00124278-199608000-00009

    • Search Google Scholar
    • Export Citation
  • 34.

    Sankey SP, Raja Azidin RM, Robinson MA, et al. How reliable are knee kinematics and kinetics during side-cutting manoeuvres? Gait Posture. 2015;41(4):905–911. PubMed doi: 10.1016/j.gaitpost.2015.03.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 90 90 12
Full Text Views 0 0 0
PDF Downloads 0 0 0