Kinematic Gait Patterns in Competitive and Recreational Runners

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $87.00

1 year subscription

USD $116.00

Student 2 year subscription

USD $165.00

2 year subscription

USD $215.00

Certain homogeneous running subgroups demonstrate distinct kinematic patterns in running; however, the running mechanics of competitive and recreational runners are not well understood. Therefore, the purpose of this study was to determine whether we could separate and classify competitive and recreational runners according to gait kinematics using multivariate analyses and a machine learning approach. Participants were allocated to the ‘competitive’ (n = 20) or ‘recreational’ group (n = 15) based on age, sex, and recent race performance. Three-dimensional (3D) kinematic data were collected during treadmill running at 2.7 m/s. A support vector machine (SVM) was used to determine if the groups were separable and classifiable based on kinematic time point variables as well as principal component (PC) scores. A cross-fold classification accuracy of 80% was found between groups using the top 5 ranked time point variables, and the groups could be separated with 100% cross-fold classification accuracy using the top 14 ranked PCs explaining 60.29% of the variance in the data. The features were primarily related to pelvic tilt, as well as knee flexion and ankle eversion in late stance. These results suggest that competitive and recreational runners have distinct, ‘typical’ running patterns that may help explain differences in injury mechanisms.

Clermont and Phinyomark are with the Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada. Osis is with the Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; and Running Injury Clinic, Calgary, Alberta, Canada. Ferber is with the Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; and Running Injury Clinic, Calgary, Alberta, Canada.

Address author correspondence to Reed Ferber at rferber@ucalgary.ca.
Journal of Applied Biomechanics
Article Sections
References
  • 1.

    Ferber RDavis IMWilliams DS. Gender differences in lower extremity mechanics during running. Clin Biomech. 2003;18(4):350357. PubMed doi:10.1016/S0268-0033(03)00025-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Phinyomark AOsis SHettinga BALeigh RFerber R. Gender differences in gait kinematics in runners with iliotibial band syndrome. Scand J Med Sci Sport. 2015;25(6):744753. PubMed doi:10.1111/sms.12394

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Phinyomark AHettinga BAOsis STFerber R. Gender and age-related differences in bilateral lower extremity mechanics during treadmill running. PLoS One. 2014;9(8):e105246. PubMed doi:10.1371/journal.pone.0105246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Boyer KASilvernail JFHamill J. The role of running mileage on coordination patterns in running. J Appl Biomech. 2014;30(5):649654. PubMed doi:10.1123/jab.2013-0261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Larson PHiggins EKaminski Jet al. Foot strike patterns of recreational and sub-elite runners in a long-distance road race. J Sports Sci. 2011;29(15):16651673. PubMed doi:10.1080/02640414.2011.610347

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Hasegawa HIHAmauchi TAYRaemer WIJK. Foot strike patterns of runners at the 15-km point during an elite-level half marathon. J Strength Cond Res. 2007;21(3):888893. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bertelsen MLJensen JFNielsen MHNielsen RORasmussen S. Footstrike patterns among novice runners wearing a conventional, neutral running shoe. Gait Posture. 2013;38(2):354356. PubMed doi:10.1016/j.gaitpost.2012.11.022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Kasmer MELiu XRoberts KGValadao JM. Foot-strike pattern and performance in a marathon. Int J Sports Physiol Perform. 2013;8(3):286292. PubMed doi:10.1123/ijspp.8.3.286

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Lieberman DEVenkadesan MWerbel WAet al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531535. PubMed doi:10.1038/nature08723

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Moore IS. Is there an economical running technique? A review of modifiable biomechanical factors affecting running economy. Sport Med. 2016;46(6):793807. PubMed doi:10.1007/s40279-016-0474-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Moore ISJones AMDixon SJ. Mechanisms for improved running economy in beginner runners. Med Sci Sports Exerc. 2012;44(9):17561763. PubMed doi:10.1249/MSS.0b013e318255a727

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Williams KRCavanagh PR. Relationship between distance running mechanics, running economy, and performance. J Appl Physiol. 1987;63(30):12361245. PubMed

  • 13.

    Williams KRCavanagh PR. Biomechanical correlates with running economy in elite distance runners. Proceedings of the North American Congress on Biomechanics; 1986.

    • Export Citation
  • 14.

    Cavanagh PRPollock MLLanda J. A biomechanical comparison of elite and good distance runners. Ann N Y Acad Sci. 1977;301:328345. PubMed doi:10.1111/j.1749-6632.1977.tb38211.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Preece SJMason DBramah C. The coordinated movement of the spine and pelvis during running. Hum Mov Sci. 2016;45:110118. PubMed doi:10.1016/j.humov.2015.11.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Fukuchi RKEskofier BMDuarte MFerber R. Support vector machines for detecting age-related changes in running kinematics. J Biomech. 2011;44(3):540542. PubMed doi:10.1016/j.jbiomech.2010.09.031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Nigg BMBaltich JMaurer CFederolf P. Shoe midsole hardness, sex and age effects on lower extremity kinematics during running. J Biomech. 2012;45(9):16921697. PubMed doi:10.1016/j.jbiomech.2012.03.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Osis STHettinga BAMacdonald SLFerber R. A novel method to evaluate error in anatomical marker placement using a modified generalized Procrustes analysis. Comput Methods Biomech Biomed Engin. 2015;18(10):11081116. PubMed doi:10.1080/10255842.2013.873034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    USA Track & Field. USA Masters Age Grading. http://www.usatfmasters.org/fa_agegrading.htm. 2016.

    • Export Citation
  • 20.

    Pohl MBLloyd CFerber R. Can the reliability of three-dimensional running kinematics be improved using functional joint methodology? Gait Posture. 2010;32(4):559563. PubMed doi:10.1016/j.gaitpost.2010.07.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Osis STHettinga BALeitch JFerber R. Predicting timing of foot strike during running, independent of striking technique, using principal component analysis of joint angles. J Biomech. 2014;47(11):27862789. PubMed doi:10.1016/j.jbiomech.2014.06.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Osis STHettinga BAFerber R. Predicting ground contact events for a continuum of gait types: an application of targeted machine learning using principal component analysis. Gait Posture. 2016;46:8690. PubMed doi:10.1016/j.gaitpost.2016.02.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Abdi HWilliams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433459. doi:10.1002/wics.101

  • 24.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155159. PubMed doi:10.1037/0033-2909.112.1.155

  • 25.

    Phinyomark AOsis STHettinga BAKobsar DFerber R. Gender differences in gait kinematics for patients with knee osteoarthritis. BMC Musculoskelet Disord. 2016;17(1):157. PubMed doi:10.1186/s12891-016-1013-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Ferber RHreljac AKendall KD. Suspected mechanisms in the cause of overuse running injuries: a clinical review. Sports Health. 2009;1(3):242246. PubMed doi:10.1177/1941738109334272

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Warden SJBurr DBBrukner PD. Stress fractures: pathophysiology, epidemiology, and risk factors. Curr Osteoporos Rep. 2006;4:103109. PubMed doi:10.1007/s11914-996-0029-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kluitenberg Bvan Middelkoop MDiercks Rvan der Worp H. What are the differences in injury proportions between different populations of runners? A systematic review and meta-analysis. Sport Med. 2015;45(8):11431161. PubMed doi:10.1007/s40279-015-0331-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Powers CM. The influence of abnormal hip mechanics on knee injury: a biomechanical perspective. J Orthop Sports Phys Ther. 2010;40(2):4251. PubMed doi:10.2519/jospt.2010.3337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Zazulak BTHewett TEReeves NPGoldberg BCholewicki J. Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;35(7):11231130. PubMed doi:10.1177/0363546507301585

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Zazulak BTHewett TEReeves NPGoldberg BCholewicki J. The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med. 2007;35(3):368373. PubMed doi:10.1177/0363546506297909

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hamill JDerrick TRHolt KG. Shock attenuation and stride frequency during running. Hum Mov Sci. 1995;14(1):4560. doi:10.1016/0167-9457(95)00004-C

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    McMahon TAValiant GFrederick EC. Groucho running. J Appl Physiol. 1987;62(6):23262337. PubMed

  • 34.

    Greenberg ETGreenberg SBrown-Budde K. Biomechanics and gait analysis for stress fractures. In: MillerTKaedingCC eds. Stress Fractures in Athletes: Diagnosis and Management. Columbus, OH: Springer International Publishing; 2015:3350. doi:10.1007/978-3-319-09238-6

    • Search Google Scholar
    • Export Citation
  • 35.

    Kuhman DJPaquette MRPeel SAMelcher DA. Comparison of ankle kinematics and ground reaction forces between prospectively injured and uninjured collegiate cross country runners. Hum Mov Sci. 2016;47:915. PubMed doi:10.1016/j.humov.2016.01.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Dierks TAManal KTHamill JDavis IS. Proximal and distal influences on hip and knee kinematics in runners with patellofemoral pain during a prolonged run. J Orthop Sports Phys Ther. 2008;38(8):448456. PubMed doi:10.2519/jospt.2008.2490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Powers CM. The influence of altered lower-extremity kinematics on patellofemoral joint dysfunction: a theoretical perspective. J Orthop Sports Phys Ther. 2003;33(11):639646. PubMed doi:10.2519/jospt.2003.33.11.639

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Williams DSMcClay ISHamill J. Arch structure and injury patterns in runners. Clin Biomech. 2001;16(4):341347. PubMed doi:10.1016/S0268-0033(01)00005-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Maurer CFederolf Pvon Tscharner VStirling LNigg BM. Discrimination of gender-, speed-, and shoe-dependent movement patterns in runners using full-body kinematics. Gait Posture. 2012;36(1):4045. PubMed doi:10.1016/j.gaitpost.2011.12.023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Gehring DMornieux GFleischmann JGollhofer A. Knee and hip joint biomechanics are gender-specific in runners with high mileage. Int J Sports Med. 2014;35:153158. PubMed doi:10.1055/s-0033-1343406

    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 164 164 58
Full Text Views 10 10 4
PDF Downloads 3 3 2
Altmetric Badge
PubMed
Google Scholar