Reliability of a New Medicine Ball Throw Power Test

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

The purpose of this study was to examine the reliability of a new upper body medicine ball push-press (MBP-P) test. Twenty-three strength trained volunteers performed a series of supine MBP-P throws using loads representing 5% and10% of their 5RM bench press (5 repetitions at each load). Throws were performed on a force platform (2000 Hz), with medicine ball kinematic data collected using a high-speed motion capture (500 Hz). Testing was repeated after 7–10 days to quantify intertest reliability. Maximal force (Fmax), impulse at Fmax, time to Fmax, and maximum rate of force development (RFDmax) were all calculated from the force platform outputs, with maximum ball velocity (Velmax) and maximum ball acceleration (Accelmax) developed from the kinematic data. Reliability was assessed using intraclass correlation (ICC), coefficient of variation (%CV), and typical error. Medicine ball kinematic variables were more reliable (CV% = 2.6–5.3, ICC = 0.87–0.95) than the various force platform derived power variables (CV% = 7.9–26.7, ICC = 0.51–0.90). The MBP-P test produces reliable data and can be used to quantify many standard power based measures, with the key findings have implications for athletic populations requiring high velocity, light load upper body pushing power.

Sayers and Bishop are with School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia.

Address author correspondence to Mark Sayers at msayers@usc.edu.au.
  • 1.

    Alemany JA, Pandorf CE, Montain SJ, et al. Reliability assessment of ballistic jump squats and bench throws. J Strength Cond Res. 2005;19(1), 3338. PubMed doi: 10.1519/14783.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Baker D. Comparison of upper-body strength and power between professional and college-aged rugby league players. J Strength Cond Res. 2001;15(1), 3035. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Baker D. Differences in strength and power among junior-high, senior-high, college-aged, and elite professional rugby league players. J Strength Cond Res. 2002;16(4), 581585. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Baker D, Nance S, Moore M. The load that maximizes the average mechanical power output during explosive bench press throws in highly trained athletes. J Strength Cond Res. 2001;15(1), 2024. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brandenburg JP. The acute effects of prior dynamic resistance exercise using different loads on subsequent upper-body explosive performance in resistance-trained men. J Strength Cond Res. 2005;19(2), 427432. PubMed doi: 10.1519/R-15074.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Baker D, Newton R. Change in power output across a high-repetition set of bench throws and jump squats in highly trained athletes. J Strength Cond Res. 2007;21(4), 10071011. PubMed doi: 10.1519/R-22376.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bevan HR, Bunce PJ, Owen NJ, et al. Optimal loading for the development of peak power output in professional rugby players. J Strength Cond Res. 2010;24(1), 4347. PubMed doi: 10.1519/JSC.0b013e3181c63c64

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jandacka D, Vaverka F. A regression model to determine load for maximum power output. Sports Biomech. 2008;7(3), 361371. PubMed doi: 10.1080/14763140802266934

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Newton RU, Murphy AJ, Humphries BJ, et al. Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements. Eur J Appl Physiol. 1997;75(4), 333342. PubMed doi: 10.1007/s004210050169

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Cronin JB, McNair PJ, Marshall RN. Force-velocity analysis of strength-training techniques and load: implications for training strategy and research. J Strength Cond Res. 2003;17(1), 148155. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cronin JB, Owen GJ. Upper-body strength and power assessment in women using a chest pass. J Strength Cond Res. 2004;18(3), 401404. PubMed doi: 10.1519/12072.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cronin JB, Sleivert G. Challenges in understanding the influence of maximal power training on improving athletic performance. Sports Med. 2005;35(3), 213234. PubMed doi: 10.2165/00007256-200535030-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Harris N, Cronin J, Keogh J. Contraction force specificity and its relationship to functional performance. J Sports Sci. 2007;25(2), 201212. PubMed doi: 10.1080/02640410600630910

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McMaster DT, Gill ND, Cronin JB, McGuigan MR. Force-velocity-power assessment in semiprofessional rugby union players. J Strength Cond Res. 2016;30(4), 11181126. PubMed doi: 10.1519/JSC.0b013e3182a1da46

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Samozino P, Rejc E, Di Prampero PE, et al. Optimal force-velocity profile in ballistic movements--altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2), 313322. PubMed doi: 10.1249/MSS.0b013e31822d757a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cormie P, McBride JM, McCaulley GO. Power-time, force-time, and velocity-time curve analysis of the countermovement jump: impact of training. J Strength Cond Res. 2009;23(1), 177186. PubMed doi: 10.1519/JSC.0b013e3181889324

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    McMaster DT, Gill N, Cronin J, McGuigan M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014;44(5), 603623. PubMed doi: 10.1007/s40279-014-0145-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Debanne T, Laffaye G. Predicting the throwing velocity of the ball in handball with anthropometric variables and isotonic tests. J Sports Sci. 2011;29(7), 705713. PubMed doi: 10.1080/02640414.2011.552112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ignjatovic AM, Markovic ZM, Radovanovic DS. Effect of 12-week medicine ball training on muscle strength and power in young female handball players. J Strength Cond Res. 2012;26(8), 21662173. PubMed doi: 10.1519/JSC.0b013e31823c477e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mayhew JL, Bird M, Cole ML, et al. Comparison of the backward overhead medicine ball throw to power production in college football players. J Strength Cond Res. 2005;19(3), 514518. PubMed doi: 10.1519/15644.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stockbrugger BA, Haennel RG. Validity and reliability of a medicine ball explosive power test. J Strength Cond Res. 2001;15(4), 431438. PubMed

  • 22.

    van den Tillaar R, Marques MC. Reliability of seated and standing throwing velocity using different weighted medicine balls. J Strength Cond Res. 2013;27(5), 12341238. PubMed doi: 10.1519/JSC.0b013e3182654a09

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Falvo MJ, Schilling BK, Weiss LW. Techniques and considerations for determining isoinertial upper-body power. Sports Biomech. 2006;5(2), 293311. PubMed doi: 10.1080/14763140608522879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1), 115. PubMed doi: 10.2165/00007256-200030010-00001

  • 25.

    Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates.

  • 26.

    Gabbett TJ. Physiological and anthropometric correlates of tackling ability in rugby league players. J Strength Cond Res. 2009;23(2), 540548. PubMed doi: 10.1519/JSC.0b013e31818efe8b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Negrete RJ, Hanney WJ, Kolber MJ, et al. Reliability, minimal detectable change, and normative values for tests of upper extremity function and power. J Strength Cond Res. 2010;24(12), 33183325. PubMed doi: 10.1519/JSC.0b013e3181e7259c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    van den Tillaar R, Marques MC. A comparison of three training programs with the same workload on overhead throwing velocity with different weighted balls. J Strength Cond Res. 2011;25(8), 23162321. PubMed doi: 10.1519/JSC.0b013e3181f159d6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Garcia-Ramos A, Padial P, Garcia-Ramos M, et al. Reliability analysis of traditional and ballistic bench press exercises at different loads. J Hum Kinet. 2015;47, 5159. PubMed doi: 10.1515/hukin-2015-0061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Harasin D, Dizdar D, Markovic G. High reliability of tests of maximum throwing performance. J Hum Movement Stud. 2006;51(1), 6376.

All Time Past Year Past 30 Days
Abstract Views 463 437 27
Full Text Views 17 16 0
PDF Downloads 12 12 0