Head, Neck, Trunk, and Pelvis Tissue Mass Predictions for Young Adults Using Anthropometric Measures and Dual-Energy X-Ray Absorptiometry

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Accurate prediction of wobbling mass (WM), fat mass (FM), lean mass (LM), and bone mineral content (BMC) of living people using regression equations developed from anthropometric measures (lengths, circumferences, breadths, skinfolds) has previously been reported, but only for the extremities. Multiple linear stepwise regression was used to generate comparable equations for the head, neck, trunk, and pelvis of young adults (38 males, 38 females). Equations were validated using actual tissue masses from an independent sample of 13 males and 13 females by manually segmenting full-body dual-energy x-ray absorptiometry scans. Prediction equations exhibited adjusted R2 values ranging from .249 to .940, with more explained variance for LM and WM than BMC and FM, especially for the head and neck. Mean relative errors between predicted and actual tissue masses ranged from −11.07% (trunk FM) to 7.61% (neck FM). Actual and predicted tissue masses from all equations were significantly correlated (R2 = .329 to .937), except head BMC (R2 = .046). These results show promise for obtaining in-vivo head, neck, trunk, and pelvis tissue mass estimates in young adults. Further research is needed to improve head and neck FM and BMC predictions and develop tissue mass prediction equations for older populations.

Gyemi, Kahelin, George, and Andrews are with the Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada.

Address author correspondence to David M. Andrews at dandrews@uwindsor.ca.
  • 1.

    Gruber K , Ruder H , Denoth J , Schneider K . A comparative study of impact dynamics: wobbling mass model versus rigid body models. J Biomech. 1998;31(5):439–444. PubMed doi:10.1016/S0021-9290(98)00033-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Pain MT , Challis JH . The role of the heel pad and shank soft tissue during impacts: a further response to dynamic impact loading. J Biomech. 2001;34(3):327–333. PubMed doi:10.1016/S0021-9290(00)00199-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Pain MT , Challis JH . The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings. J Biomech. 2006;39(1):119–124. PubMed doi:10.1016/j.jbiomech.2004.10.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Liu W , Nigg BM . A mechanical model to determine the influence of masses and mass distribution on the impact force during running. J Biomech. 2000;33(2):219–224. PubMed doi:10.1016/S0021-9290(99)00151-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Clarys JP , Martin AD , Marfell-Jones MJ , Janssens V , Caboor D , Drinkwater DT . Human body composition: a review of adult dissection data. Am J Hum Biol. 1999;11(2):167–174. PubMed doi:10.1002/(SICI)1520-6300(1999)11:2<167::AID-AJHB4>3.0.CO;2-G

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Haarbo J , Gotfredsen A , Hassager C , Christiansen C . Validation of body composition by dual energy X-ray absorptiometry (DEXA). Clin Physiol. 1991;11(4):331–341. PubMed doi:10.1111/j.1475-097X.1991.tb00662.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Van Loan MD . Is dual-energy X-ray absorptiometry ready for prime time in the clinical evaluation of body composition? Am J Clin Nutr. 1998;68(6):1155–1156. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Ball SD , Altena TS , Swan PD . Comparison of anthropometry to DXA: a new prediction equation for men. Eur J Clin Nutr. 2004;58(11):1525–1531. PubMed doi:10.1038/sj.ejcn.1602003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bilsborough JC , Greenway K , Opar D , Livingstone S , Cordy J , Coutts AJ . The accuracy and precision of DXA for assessing body composition in team sport athletes. J Sports Sci. 2014;32(19):1821–1828. PubMed doi:10.1080/02640414.2014.926380

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Durkin JL , Dowling JJ , Andrews DM . The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. J Biomech. 2002;35(12):1575–1580. PubMed doi:10.1016/S0021-9290(02)00227-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Wicke J , Dumas GA . Estimating segment inertial parameters using fan-beam DXA. J Appl Biomech. 2008;24(2):180–184. PubMed doi:10.1123/jab.24.2.180

  • 12.

    Burkhart TA , Arthurs KL , Andrews DM . Manual segmentation of DXA scan images results in reliable upper and lower extremity soft and rigid tissue mass estimates. J Biomech. 2009;42(8):1138–1142. PubMed doi:10.1016/j.jbiomech.2009.02.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gyemi DL , Kahelin C , George NC , Andrews DM . (2016). Reliability of head, neck, trunk and pelvis tissue mass estimates in different age populations using DXA scan regions of interest. Poster presented at: 12th Annual Ontario Biomechanics Conference (OBC); March 2016; Alliston, ON, Canada.

    • Export Citation
  • 14.

    Holmes JD , Andrews DM , Durkin JL , Dowling JJ . Predicting in vivo soft tissue masses of the lower extremity using segment anthropometric measures and DXA. J Appl Biomech. 2005;21(4):371–382. PubMed doi:10.1123/jab.21.4.371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Arthurs KL , Andrews DM . Upper extremity soft and rigid tissue mass prediction using segment anthropometric measures and DXA. J Biomech. 2009;42(3):389–394. PubMed doi:10.1016/j.jbiomech.2008.11.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    George NC , Kahelin C , Burkhart TA , Andrews DM . Reliability of head, neck and trunk anthropometric measurements used for predicting segment tissue masses in living humans. Poster presented at: 21st Congress of the European Society of Biomechanics (ESB); July 2015; Prague, Czech Republic.

    • Export Citation
  • 17.

    Dempster WT . Space Requirements of the Seated Operator. Ohio, IL: Wright-Patterson Air Force Base (WADC TR 55-159); 1955.

  • 18.

    Clarys JP , Martin AD , Drinkwater DT . Gross tissue weights in the human body by cadaver dissection. Hum Biol. 1984;56(3):459–473. PubMed

  • 19.

    Stevens JP . Applied Multivariate Statistics for the Social Sciences. 4th ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 2002.

  • 20.

    Tabachnick BG , Fidell LS . Using Multivariate Statistics. 6th ed. Boston, MA: Pearson Education; 2013.

  • 21.

    Baumgartner RN . Body composition in healthy aging. Ann N Y Acad Sci. 2000;904:437–448. PubMed doi:10.1111/j.1749-6632.2000.tb06498.x

  • 22.

    Daniels SR , Khoury PR , Morrison JA . The utility of body mass index as a measure of body fatness in children and adolescents: differences by race and gender. Pediatrics. 1997;99(6):804–807. PubMed doi:10.1542/peds.99.6.804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Guo W , Bradbury KE , Reeves GK , Key TJ . Physical activity in relation to body size and composition in women in UK Biobank. Ann Epidemiol. 2015;25(6):406–413.e6. PubMed doi:10.1016/j.annepidem.2015.01.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Jackson AS , Pollock ML . Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497–504. PubMed doi:10.1079/BJN19780152

All Time Past Year Past 30 Days
Abstract Views 48 48 14
Full Text Views 1 1 0
PDF Downloads 0 0 0