Reliability of Head, Neck, and Trunk Anthropometric Measurements Used for Predicting Segment Tissue Masses in Living Humans

in Journal of Applied Biomechanics
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $87.00

1 year subscription

USD  $116.00

Student 2 year subscription

USD  $165.00

2 year subscription

USD  $215.00

Soft and rigid tissue mass prediction equations have been previously developed and validated for the segments of the upper and lower extremities in living humans using simple anthropometric measurements. The reliability of these measurements has been found to be good to excellent for all measurement types (segment lengths, circumferences, breadths, skinfolds). However, the reliability of the measurements needed to develop corresponding equations for the head, neck, and trunk has yet to be determined. The purpose of this study was to quantify the inter- and intrameasurer reliability of 34 surface anthropometric measurements of the head, neck, and trunk segments. Measurements (11 lengths, 7 circumferences, 11 breadths, 5 skinfolds) were taken twice separately on 50 healthy, university-age individuals using standard anthropometric tools. The mean inter- and intrameasurer measurement differences were fairly small overall, with 64.7% and 67.6% of the relative differences less than 5%, respectively. All measurements, except for the right lateral trunk, had intraclass correlation coefficients (ICCs) greater than 0.75, and coefficients of variation (CVs) less than 10%, indicating good reliability overall. These results are consistent with previous work for the extremities and provide support for the use of the defined surface measurements for future tissue mass prediction equation development.

George, Kahelin, and Andrews are with the Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada. Burkhart is with the Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada.

Address author correspondence to David M. Andrews at dandrews@uwindsor.ca.
  • 1.

    Gittoes MJ , Brewin MA , Kerwin DG . Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot-heel landings. Hum Mov Sci. 2006;25:775–787. doi:10.1016/j.humov.2006.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Gruber K , Ruder H , Denoth J , Schneider K . A comparative study of impact dynamics: wobbling mass model versus rigid body models. J Biomech. 1998;31:439–444. PubMed doi:10.1016/S0021-9290(98)00033-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Liu W , Nigg BM . A mechanical model to determine the influence of masses and mass distribution on the impact force during running. J Biomech. 2000;33:219–224. PubMed doi:10.1016/S0021-9290(99)00151-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pain MTG , Challis JH . The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings. J Biomech. 2006;39:119–124. PubMed doi:10.1016/j.jbiomech.2004.10.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Schmitt S , Günther M . Human leg impact: energy dissipation of wobbling masses. Arch Appl Mech. 2011;81:887–897. doi:10.1007/s00419-010-0458-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Yue Z , Mester J . A model analysis of internal loads, energetics, and effects of wobbling mass during the whole-body vibration. J Biomech. 2002;35:639–647. PubMed doi:10.1016/S0021-9290(01)00243-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Yeadon MR , King MA , Forrester SE , Caldwell GE , Pain MTG . The need for muscle co-contraction prior to a landing. J Biomech. 2010;43:364–369. PubMed doi:10.1016/j.jbiomech.2009.06.058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kentel BB , King MA , Mitchell SR . Evaluation of a subject-specific, torque-driven computer simulation model of one-handed tennis backhand ground strokes. J Appl Biomech. 2011;27:345–354. PubMed doi:10.1123/jab.27.4.345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Wilson C , King MA , Yeadon MR . The effects of initial conditions and takeoff technique on running jumps for height and distance. J Biomech. 2011;44:2207–2212. PubMed doi:10.1016/j.jbiomech.2011.06.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bazrgari B , Nussbaum MA , Madigan ML , Shirazi-Adl A . Soft tissue wobbling affects trunk dynamic response in sudden perturbations. J Biomech. 2011;44:547–551. PubMed doi:10.1016/j.jbiomech.2010.09.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Clarys JP , Martin AD , Marfell-Jones MJ , Janssens V , Caboor D , Drinkwater DT . Human body composition: a review of adult dissection data. Am J Hum Biol. 1999;11:167–174. doi:10.1002/(SICI)1520-6300(1999)11:2<167::AID-AJHB4>3.0.CO;2-G

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Arthurs KL , Andrews DM . Upper extremity soft and rigid tissue mass prediction using segment anthropometric measures and DXA. J Biomech. 2009;42:389–394. PubMed doi:10.1016/j.jbiomech.2008.11.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ellis KJ . Human body composition: in vivo methods. Physiol Rev. 2000;80:649–680. PubMed

  • 14.

    Holmes JD , Andrews DM , Durkin JL , Dowling JJ . Predicting in vivo soft tissue masses of the lower extremity using segment anthropometric measures and DXA. J Appl Biomech. 2005;21:371–382. PubMed doi:10.1123/jab.21.4.371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Burkhart TA , Arthurs KL , Andrews DM . Reliability of upper and lower extremity anthropometric measurements and the effect on tissue mass predictions. J Biomech. 2008;41:1604–1610. PubMed doi:10.1016/j.jbiomech.2008.02.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Portney LG , Watkins MP . Foundation of Clinical Research Applications to Practice. 2nd ed. Upper Saddle River, NJ: Prentice-Hall Inc.; 2000

    • Search Google Scholar
    • Export Citation
  • 17.

    Atkinson G , Nevill AM . Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26:217–238. PubMed doi:10.2165/00007256-199826040-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Brydges EA , Burkhart TA , Altenhof WJ , Andrews DM . Leg soft tissue position and velocity from skin markers can be obtained with good to acceptable reliability following heel impacts. J Sports Sci. 2015;33(15):1606–1613. PubMed doi:10.1080/02640414.2014.1003583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Kouchi M , Mochimaru M , Tsuzki K , Yokoi T . Interobserver errors in anthropometry. J Hum Ergol. 1999;28:15–24. PubMed

  • 20.

    Mueller WH , Malina RM . Relative reliability of circumferences and skinfolds as measures of body fat distribution. Am J Phys Anthropol. 1987;72:437–439. doi:10.1002/ajpa.1330720404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Nordhamn K , Södergren E , Olsson E , Karlström B , Vessby B , Berglund L . Reliability of anthropometric measurements in overweight and lean subjects: consequences for correlations between anthropometric and other variables. Int J Obes. 2000;24:652–657. doi:10.1038/sj.ijo.0801216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Jackson AS , Janssen I , Sui X , Church TS , Blair SN . Longitudinal changes in body composition associated with healthy ageing: men, aged 20–96 years. Br J Nutr. 2011;107:1085–1091. PubMed doi:10.1017/S0007114511003886

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Shrout PE , Fleiss JL . Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86:420–428. PubMed doi:10.1037/0033-2909.86.2.420

  • 24.

    Weir JP . Quantifying test-retest reliability using the intraclass correlation coefficient and SEM. J Strength Cond Res. 2005;19:231–240. PubMed

  • 25.

    Jackson AS , Pollock ML . Generalized equations for predicting body density of men. Br J Nutr. 1978;40:497–504. PubMed doi:10.1079/BJN19780152

All Time Past Year Past 30 Days
Abstract Views 50 50 6
Full Text Views 3 3 0
PDF Downloads 1 1 0