Noncircular Chainrings Do Not Influence Maximum Cycling Power

Click name to view affiliation

Chee-Hoi Leong Central Connecticut State University

Search for other papers by Chee-Hoi Leong in
Current site
Google Scholar
PubMed
Close
*
,
Steven J. Elmer Michigan Technological University

Search for other papers by Steven J. Elmer in
Current site
Google Scholar
PubMed
Close
*
, and
James C. Martin University of Utah

Search for other papers by James C. Martin in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Noncircular chainrings could increase cycling power by prolonging the powerful leg extension/flexion phases, and curtailing the low-power transition phases. We compared maximal cycling power-pedaling rate relationships, and joint-specific kinematics and powers across 3 chainring eccentricities (CON = 1.0; LOWecc = 1.13; HIGHecc = 1.24). Part I: Thirteen cyclists performed maximal inertial-load cycling under 3 chainring conditions. Maximum cycling power and optimal pedaling rate were determined. Part II: Ten cyclists performed maximal isokinetic cycling (120 rpm) under the same 3 chainring conditions. Pedal and joint-specific powers were determined using pedal forces and limb kinematics. Neither maximal cycling power nor optimal pedaling rate differed across chainring conditions (all p > .05). Peak ankle angular velocity for HIGHecc was less than CON (p < .05), while knee and hip angular velocities were unaffected. Self-selected ankle joint-center trajectory was more eccentric than HIGHecc with an opposite orientation that increased velocity during extension/flexion and reduced velocity during transitions. Joint-specific powers did not differ across chainring conditions, with a small increase in power absorbed during ankle dorsiflexion with HIGHecc. Multiple degrees of freedom in the leg, crank, and pedal system allowed cyclists to manipulate ankle angular velocity to maintain their preferred knee and hip actions, suggesting maximizing extension/flexion and minimizing transition phases may be counterproductive for maximal power.

Leong is with the Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, CT. Elmer is with the Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI. Martin is with the Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT.

Address author correspondence to Chee-Hoi Leong at c.leong@ccsu.edu.
  • Collapse
  • Expand
  • 1.

    Martin JC, Spirduso WW. Determinants of maximal cycling power: crank length, pedaling rate and pedal speed. Eur J Appl Physiol. 2001;84(5):413418. PubMed doi:10.1007/s004210100400

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rodriguez-Marroyo JA, Garcia-Lopez J, Chamari K, Cordova A, Hue O, Villa JG. The rotor pedaling system improves anaerobic but not aerobic cycling performance in professional cyclists. Eur J Appl Physiol. 2009;106(1):8794. PubMed doi:10.1007/s00421-009-0993-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Santalla A, Manzano JM, Perez M, Lucia A. A new pedaling design: the Rotor--effects on cycling performance. Med Sci Sports Exerc. 2002;34(11):18541858. PubMed doi:10.1097/00005768-200211000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Harrison JY. Maximizing human power output by suitable selection of motion cycle and load. Hum Factors. 1970;12:315329. doi:10.1177/001872087001200308

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Henderson SC, Ellis RW, Klimovitch G, Brooks GA. The effects of circular and elliptical chainwheels on steady-rate cycle ergometer work efficiency. Med Sci Sports. 1977;9(4):202207. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Hull ML, Williams M, Williams K, Kautz S. Physiological response to cycling with both circular and noncircular chainrings. Med Sci Sports Exerc. 1992;24(10):11141122. PubMed doi:10.1249/00005768-199210000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hue O, Galy O, Hertogh C, Casties JF, Prefaut C. Enhancing cycling performance using an eccentric chainring. Med Sci Sports Exerc. 2001;33(6):10061010. PubMed doi:10.1097/00005768-200106000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rankin JW, Neptune RR. A theoretical analysis of an optimal chainring shape to maximize crank power during isokinetic pedaling. J Biomech. 2008;41(7):14941502. PubMed doi:10.1016/j.jbiomech.2008.02.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    O’Hara CR, Clark RD, Hagobian T, McGaughey K. Effects of chainring type (Circular vs. Rotor Q-Ring) on 1km time trial performance over six weeks in competitive cyclists and triathletes. Int J Sports Sci Eng. 2012;6(1):2540.

    • Search Google Scholar
    • Export Citation
  • 10.

    Mateo-March M, Fernandez-Pena E, Blasco-Lafarga C, Morente-Sanchez J, Zabala M. Does a non-circular chainring improve performance in the bicycle motocross cycling start sprint? J Sports Sci Med. 2014;13(1):97104. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Sharp A. Bicycles and Tricycles: An Elementary Treatise on Their Design and Construction. White Plains, NY: Longman; 1896.

  • 12.

    Martin JC, Brown NA. Joint-specific power production and fatigue during maximal cycling. J Biomech. 2009;42(4):474479. PubMed doi:10.1016/j.jbiomech.2008.11.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Elmer SJ, Barratt PR, Korff T, Martin JC. Joint-specific power production during submaximal and maximal cycling. Med Sci Sports Exerc. 2011;43(10):19401947. PubMed doi:10.1249/MSS.0b013e31821b00c5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McDaniel J, Behjani NS, Elmer SJ, Brown NA, Martin JC. Joint-specific power-pedaling rate relationships during maximal cycling. J Appl Biomech. 2014;30(3):423430. PubMed doi:10.1123/jab.2013-0246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Horvais N, Samozino P, Zameziati K, Hautier CA, Hintzy F. Effects of a noncircular chainring on muscular, mechanical and physiological parameters during cycle ergometer tests. Isokinet Exerc Sci. 2007;15:271279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Yoshihuku Y, Herzog W. Optimal design parameters of the bicycle-rider system for maximal muscle power output. J Biomech. 1990;23(10):10691079. PubMed doi:10.1016/0021-9290(90)90322-T

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Martin JC, Farrar RP, Wagner BM, Spirduso WW. Maximal power across the lifespan. J Gerontol Biol Sci Med Sci. 2000;55(6):311316. doi:10.1093/gerona/55.6.M311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Martin JC, Wagner BM, Coyle EF. Inertial-load method determines maximal cycling power in a single exercise bout. Med Sci Sports Exerc. 1997;29(11):15051512. PubMed doi:10.1097/00005768-199711000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Martin JC, Diedrich D, Coyle EF. Time course of learning to produce maximum cycling power. Int J Sports Med. 2000;21(7):485487. PubMed doi:10.1055/s-2000-7415

  • 20.

    Woltring HJ. A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Adv Eng Softw. 1986;8(2):104113. doi:10.1016/0141-1195(86)90098-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Martin JC, Elmer SJ, Horscroft RD, Brown NA, Schultz BB. A low-cost instrumented spatial linkage accurately determines ASIS position during cycle ergometry. J Appl Biomech. 2007;23(3):224229. PubMed doi:10.1123/jab.23.3.224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Barratt PR, Korff T, Elmer SJ, Martin JC. Effect of crank length on joint-specific power during maximal cycling. Med Sci Sports Exerc. 2011;43(9):16891697. PubMed doi:10.1249/MSS.0b013e3182125e96

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Elmer SJ, Marshall CS, Wehmanen K, et al. Effects of locomotor muscle fatigue on joint-specific power production during cycling. Med Sci Sports Exerc. 2012;44(8):15041511. PubMed doi:10.1249/MSS.0b013e31824fb8bd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Neptune RR, Hull ML. Accuracy assessment of methods for determining hip movement in seated cycling. J Biomech. 1995;28(4):423437. PubMed doi:10.1016/0021-9290(94)00080-N

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    De Leva P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J Biomech. 1996;29(9):12231230. PubMed doi:10.1016/0021-9290(95)00178-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Elftman H. Forces and energy changes in the leg during walking. Am J Phys-Leg Cont. 1939;125(2):339356.

  • 27.

    Cohen J. Statistical Power Analysis for the Behavioral Science. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988:2327.

  • 28.

    Bakeman R. Recommended effect size statistics for repeated measures designs. Behav Res Methods. 2005;37(3):379384. PubMed doi:10.3758/BF03192707

  • 29.

    McCartney N, Heigenhauser GJ, Jones NL. Power output and fatigue of human muscle in maximal cycling exercise. J Appl Physiol. 1983;55(1 pt 1):218224.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Tomas A, Ross EZ, Martin JC. Fatigue during maximal sprint cycling: unique role of cumulative contraction cycles. Med Sci Sports Exerc. 2010;42(7):13641369.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hansen EA, Jensen K, Hallen J, Rasmussen J, Pedersen PK. Effect of chain wheel shape on crank torque, freely chosen pedal rate, and physiological responses during submaximal cycling. J Physiol Anthropol. 2009;28(6):261267. PubMed doi:10.2114/jpa2.28.261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Strutzenberger G, Wunsch T, Kroell J, Dastl J, Schwameder H. Effect of chainring ovality on joint power during cycling at different workloads and cadences. Sports Biomech. 2014;13(2):97108. PubMed doi:10.1080/14763141.2014.908946

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Weyand PG, Lin JE, Bundle MW. Sprint performance-duration relationships are set by the fractional duration of external force application. AJP Regul Integr Comp Physiol. 2005;290(3):R758R765. doi:10.1152/ajpregu.00562.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Morton RH. A three component model of human bioenergetics. J Math Biol. 1986;24(4):451466. PubMed doi:10.1007/BF01236892

  • 35.

    Morton RH. A 3-parameter critical power model. Ergonomics. 1996;39(4):611619. PubMed doi:10.1080/00140139608964484

  • 36.

    Gordon S. Optimising distribution of power during a cycling time trial. Sports Eng. 2005;8(2):8190. doi:10.1007/BF02844006

All Time Past Year Past 30 Days
Abstract Views 2642 265 55
Full Text Views 69 23 0
PDF Downloads 34 5 1